Применение масс-спектрометрии

  • · Ядерная энергетика;
  • · Археология;
  • · Нефтехимия;
  • · Геохимия (изотопная геохронология);
  • · Агрохимия;
  • · Химическая промышленность;
  • · Анализ полупроводниковых материалов, особо чистых металлов, тонких пленок и порошков (например, оксидов U и РЗЭ);
  • · Фармацевтика - для контроля качества производимых лекарств и выявления фальсификатов;
  • · Медицинская диагностика;
  • · Биохимия - идентификация белков, исследование метаболизма лекарственных средств.

Хромато-масс-спектрометрия

Хромато-масс-спектрометрия - метод анализа смесей главным образом органических веществ и определения следовых количеств веществв объеме жидкости. Метод основан на комбинации двух самостоятельных методов - хроматографии и масс-спектрометрии. С помощью первого осуществляют разделение смеси на компоненты, с помощью второго - идентификацию и определение строения вещества, количественный анализ. Известны 2 варианта хромато-масс-спектрометрии, представляющие собой комбинацию масс-спектрометрии либо с газо-жидкостной хроматографией (ГЖХ), либо с высокоэффективной жидкостной хроматографией.

Рис. 10.

Первые исследования аналитических возможностей хромато-масс-спектрометрии были проведены в 1950-х гг., первые промышленные приборы, объединяющие газо-жидкостной хроматограф и

масс-спектрометр, появились в 60-х гг. Принципиальная совместимость этих двух приборов обусловлена тем, что в обоих случаях анализируемое вещество находится в газовой фазе, рабочие температурные интервалы одинаковы, пределы обнаружения (чувствительность) близки. Различие состоит в том, что в ионном источнике масс-спектрометра поддерживается высокий вакуум (10 -5 - 10 -6 Па), тогда как давление в хроматографической колонке 10 5 Па. Для понижения давления используют сепаратор, который одним концом соединен с выходом хроматографической колонки, а другим - с ионным источником масс-спектрометра. Сепаратор удаляет из газового потока, выходящего из колонки, основную часть газа-носителя, а органическое вещество пропускает в масс-спектрометр. При этом давление на выходе колонки понижается до рабочего давления в масс-спектрометре.

Принцип действия сепараторов основан либо на различии подвижности молекул газа-носителя и анализируемого вещества, либо на их различной проницаемости через полупроницаемую мембрану. В промышленности чаще всего применяют инжекторные сепараторы, работающие по первому принципу. Одностадийные сепараторы этого типа содержат две форсунки с отверстиями небольшого диаметра, которые установлены точно напротив друг друга. В объеме между форсунками создается давление 1,33 Па. Газовый поток из хроматографической колонки через первую форсунку со сверхзвуковой скоростью попадает в область вакуума, где молекулы распространяются со скоростями, обратно пропорциональными их массе. В результате более легкие и быстрые молекулы газа-носителя откачиваются насосом, а более медленные молекулы органического веществава попадают в отверстие второй форсунки, а затем в ионный источник масс-спектрометра. Некоторые приборы снабжены двухстадийным сепаратором, снабженным еще одним подобным блоком форсунок. В объеме между ними создается высокий вакуум. Чем легче молекулы газа-носителя, тем эффективнее они удаляются из газового потока и тем выше обогащение органическим веществом.

Наиболее удобный для хромато-масс-спектрометрии газ-носитель - гелий. Эффективность работы сепаратора, т.е. отношение количества органического вещества в газовом потоке, выходящем из колонки, к его количеству, поступающему в масс-спектрометр, в значительной степени зависит от расхода газа-носителя, попадающего в сепаратор. При оптимальном расходе 20-30 мл/мин удаляется до 93% газа-носителя, а в масс-спектрометр поступает более 60% анализируемого вещества. Такой расход газа-носителя типичен для насадочных колонок. В случае использования капиллярной хроматографической колонки расход газа-носителя не превышает 2-3 мл/мин, поэтому на ее выходе в газовый поток добавляют дополнительное количество газа-носителя, чтобы скорость потока, поступающего в сепаратор, достигла 20-30 мл/мин. Тем самым обеспечивается наилучшая эффективность сепаратора. Гибкие кварцевые капиллярные колонки могут вводиться непосредственно в ионный источник. В этом случае ионный источник должен быть обеспечен мощной откачивающей системой, поддерживающей высокий вакуум.

В масс-спектрометрах, соединенных с газовыми хроматографами, применяется ионизация электронным ударом, химическая или полевая. Хроматографические колонки должны содержать труднолетучие и термостабильные стационарные жидкие фазы, чтобы масс-спектр их паров не налагался на спектр анализируемого вещества.

Анализируемое вещество (обычно в растворе) вводится в испаритель хроматографа, где мгновенно испаряется, а пары в смеси с газом-носителем под давлением поступают в колонку. Здесь происходит разделение смеси, и каждый компонент в токе газа-носителя по мере элюирования из колонки поступает в сепаратор. В сепараторе газ-носитель в основном удаляется и обогащенный органическим веществом газовый поток поступает в ионный источник масс-спектрометра, где молекулы ионизируются. Число образующихся при этом ионов пропорционально количеству поступающего вещества. С помощью установленного в масс-спектрометре датчика, реагирующего на изменение полного ионного тока, записывают хроматограммы. Таким образом, масс-спектрометр можно рассматривать как универсальный детектор к хроматографу. Одновременно с записью хроматограммы в любой ее точке, обычно на вершине хроматографического пика, может быть зарегистрирован масс-спектр, позволяющий установить строение вещества.

Важное условие работы прибора - быстрая запись масс-спектра, который должен регистрироваться за время, гораздо меньшее, чем время выхода хроматографического пика. Медленная запись масс-спектра может исказить соотношение интенсивностей пиков в нем. Скорость регистрации масс-спектра (скорость сканирования) определяется масс-анализатором. Наименьшее время сканирования полного масс-спектра (несколько миллисекунд) обеспечивает квадрупольный анализатор. В современных масс-спектрометрах, снабженных ЭВМ, построение хроматограмм и обработка масс-спектров производится автоматически. Через равные промежутки времени по мере элюирования компонентов смеси регистрируются масс-спектры, количественные характеристики которых накапливаются в памяти ЭВМ. Для каждого сканирования производится сложение интенсивностей всех регистрируемых ионов. Так как эта суммарная величина (полный ионный ток) пропорциональна концентрации вещества в ионном источнике, то ее используют для построения хроматограммы (эта величина откладывается по оси ординат, по оси абсцисс - время удерживания и номер сканирования). Задавая номер сканирования, можно вызвать из памяти масс-спектр в любой точке хроматограммы.

Как описано выше, могут быть проанализированы смеси веществ, достаточно хорошо разделяемые на подходящих колонках хромато-масс-спектрометрии. Иногда удается исследовать и неразрешенные хроматографические пики. Исследуемые вещества должны быть термически стабильны, хроматографически подвижны в интервале рабочей температуры колонки, легко переводиться в паровую фазу при температуре испарителя. Если вещества не удовлетворяют этим требованиям, их можно химически модифицировать, например силилированием, алкилированием или ацилированием гидрокси-, карбокси-, меркапто-, аминогрупп.

Чувствительность хромато-масс-спектрометрии (обычно 10 -6 -10 -9 г) определяется чувствительностью детектора масс-спектрометра. Более чувствительна (10 -12 -10 -15 г) разновидность хромато-масс-спектрометрии - масс-фрагментография, называемая также селективным ионным или многоионным детектированием. Суть ее состоит в том, что запись хроматограмм осуществляется не по полному ионному току, а по наиболее характерным для данного вещества ионам. Этот вид хромато-масс-спектрометрии используют для поиска, идентификации и количественного анализа вещества с известным масс-спектром в составе сложной смеси, например при количественном определении следов веществ в больших объемах биологических жидкостей (медицина, фармакология, токсикология, допинг-контроль, биохимия). Осуществляют масс-фрагментографию на хромато-масс-спектрометрах с использованием специального устройства - многоионного детектора либо с помощью ЭВМ, которая может строить хроматограммы по одному или нескольким ионам. Такая хроматограмма, в отличие от обычной, содержит пики лишь тех компонентов, в масс-спектрах которых есть такие ионы. Анализ проводят с применением внутреннего стандарта, в качестве которого часто используют аналог искомого вещества, меченный стабильными изотопами (2 Н, 13 С, 15 N, 18 O).

Другой вариант хромато-масс-спектрометрии заключается в сочетании высокоэффективной жидкостной хроматографии и масс-спектрометрии. Метод предназначен для анализа смесей труднолетучих, полярных веществ, не поддающихся анализу методом ГЖ хромато-масс-спектрометрии. Для сохранения вакуума в ионном источнике масс-спектрометра необходимо удалять растворитель, поступающий из хроматографа со скоростью 0,5-5 мл/мин. Для этого часть жидкого потока пропускают через отверстие в несколько мкм, в результате чего образуются капли, которые далее попадают в обогреваемую зону, где большая часть растворителя испаряется, а оставшаяся вместе с веществом попадает в ионный источник и ионизируется химически.

В ряде промышленных приборов реализован принцип ленточного транспортера. Элюат из колонки попадает на движущуюся ленту, которая проходит через обогреваемую ИК излучением камеру, где испаряется растворитель. Затем лента с веществом проходит через область, обогреваемую другим нагревателем, где испаряется анализируемое вещество, после чего оно поступает в ионный источник и ионизируется. Более эффективный способ сочетания высокоэффективного газо-жидкостного хроматографа и масс-спектрометра основан на электро- и термораспылении. В этом случае элюат пропускают через капилляр, нагретый до 150 °С, и распыляют в вакуумную камеру. Ионы буфера, присутствующие в растворе, участвуют в ионообразовании. Образовавшиеся капли несут положительный, или отрицательный заряд. Вдоль капли из-за малого ее диаметра создается высокий градиент электрического поля, причем по мере распада капель этот градиент возрастает. При этом происходит десорбция из капель протонированных ионов или кластеров (молекула вещества + катион буфера).

Метод хромато-масс-спектрометрии используют при структурно-аналитических исследованиях в органической химии, нефтехимии, биохимии, медицине, фармакологии, для охраны окружающей среды и др.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества путём определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество (см.: ионизация). История масс-спектрометрии ведётся с основополагающих опытов Джона Томсона в начале XX века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества.

Масс-спектрометрия в широком смысле - это наука получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров.

Масс-спектрометр - это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, и необходимый для получения масс-спектра.

Масс-спектр, как и любой спектр, в узком смысле - это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле - это нечто большее, несущее специфическую информацию, и делающее процесс его интерпретации более сложным и увлекательным.

Ионы бывают однозарядные и многозарядные, причём как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды.

Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы, позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул (см.: изотопный анализ).

В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

1)непрерывные масс-анализаторы

2)импульсные масс-анализаторы

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений. Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Масс-спектрометр

Масс-спектрометр - прибор для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанный на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. Регистрация ионов в данном устройстве осуществляется электрическими методами.

Принцип работы.

Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря, в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра.

Этап 1: Ионизация

Образование положительно заряженного иона, путем выбивания одного или нескольких электронов из атома (масс-спектрометры всегда работают с положительными ионами).

Получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров .

В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

История масс-спектрометрии

  • 1912 год - Томсон создает первый масс-спектрограф и получает масс-спектры молекул кислорода , азота , угарного газа , углекислого газа и фосгена .
  • 1913 год - С помощью своего масс-спектрографа Томсон открывает изотопы неона : неон-20 и неон-22.
  • 1923 год - Астон измеряет с помощью масс-спектрометра дефект массы .
  • 1934 год - Конрад применяет масс-спектрометрию для анализа органических молекул.
  • 1940 год - Нир с помощью препаративной масс-спектрометрии выделяет уран-235 .
  • 1940 год - Нир создает первый надежный источник электронного удара, применив ионизационную камеру .
  • 1948 год - Камероном и Эггером создан первый масс-спектрометр с время-пролётным масс-анализатором .
  • 1953 год - Пауль патентует квадрупольный масс-анализатор и ионную ловушку .
  • 1956 год - МакЛаферти и Голке создают первый газовый хромато-масс-спектрометр.
  • 1966 год - Мансон и Филд создают ионный источник с химической ионизацией .
  • 1972 год - Каратаев и Мамырин изобретают время-пролётный масс-анализатор с фокусировкой, значительно улучшающий разрешение анализатора.
  • 1974 год - Первый жидкостный хромато-масс-спектрометр создан Арпино, Болдуином и МакЛаферти
  • 1981 год - Барбер, Бордоли, Седжвик и Тайлор создают ионизатор с бомбардировкой быстрыми атомами (FAB).
  • 1982 год - Первый масс-спектр целого белка (инсулин) с помощью бомбардировки быстрыми атомами (FAB).
  • 1983 год - Бланки и Бестал изобретают термоспрей .
  • 1987 год - Карас, Бахман, Бар и Хилленкамп изобретают ионизацию лазерной десорбцией при содействии матрицы (MALDI).
  • 1999 год - Александр Макаров изобретает электростатическую ионную ловушку.

Принцип работы и устройство масс-спектрометра

Источники ионов

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы . Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

Условно способы ионизации органических веществ можно классифицировать по фазам, в которых находятся вещества перед ионизацией.

Газовая фаза Жидкая фаза

  • ионизация при атмосферном давлении (AP)
Твёрдая фаза

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

  • ионизация в индуктивно-связанной плазме (ICP)
  • термоионизация или поверхностная ионизация
  • ионизация в тлеющем разряде и искровая ионизация (см. искровой разряд)
  • ионизация в процессе лазерной абляции

Масс-анализаторы

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

Непрерывные масс-анализаторы

  • Магнитный и электростатический секторный масс-анализатор (англ. Sector instrument )
  • Квадрупольный масс-анализатор (англ. Quadrupole mass analyzer )
импульсные масс-анализаторы
  • Времяпролётный масс-анализатор (англ. Time-of-flight mass spectrometry )
  • Ионная ловушка (англ. Ion trap )
  • Квадрупольная линейная ловушка (англ. Quadrupole ion trap )
  • Масс-анализатор ионно-циклотронного резонанса с Фурье-преобразованием (англ. Fourier transform ion cyclotron resonance )
  • Орбитрэп (англ. Orbitrap )

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным . Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод , выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений.

Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS ). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Характеристики масс-спектрометров и масс-спектрометрических детекторов

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.

Важнейшая характеристика при анализе органических соединений - это чувствительность. Для того, чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр - достоверность. Ведь если Вы записывали только один пик из всего характеристического масс-спектра, Вам понадобится ещё много поработать, чтобы доказать, что этот пик соответствует именно тому компоненту, который Вас интересует. Как же разрешить эту проблему? Использовать высокое разрешение на приборах с двойной фокусировкой, где можно добиться высокого уровня достоверности не жертвуя чувствительностью. Или использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий материнскому иону можно подтвердить масс-спектром дочерних ионов. Итак, абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой.

По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения имеют улучшенные характеристики благодаря ряду инноваций, применённых в них, например, использованию искривлённого квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор и, следовательно, снижению шума.

Применения масс-спектрометрии

Разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика . Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков - бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надёжна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.

Целый ряд техногенных (то есть не существующих в природе, а появившихся в результате индустриальной деятельности человека) веществ являются супертоксикантами (имеющими отравляющее, канцерогенное или вредное для здоровья человека действие в предельно низких концентрациях). Примером является хорошо известный диоксин .

Существование ядерной энергетики немыслимо без масс-спектрометрии. С её помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Конечно и медицина не обходится без масс-спектрометрии. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter pylori и является самым надёжным из всех методов диагностики. Также, масс-спектрометрия применяется для определения наличия допинга в крови спортсменов.

Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии. Ограничимся просто перечислением: аналитическая химия , биохимия , клиническая химия , общая химия и органическая химия , фармацевтика , косметика , парфюмерия , пищевая промышленность , химический синтез , нефтехимия и нефтепераработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология , криминалистика , допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия , геология , гидрология , петрография , минералогия , геохронология , археология , ядерная промышленность и энергетика , полупроводниковая промышленность , металлургия .

Примечания

См. также

  • Масс-спектрометры для элементного анализа
  • Лазерно-искровая масс-спектрометрия (Лазерная микромасс-спектрометрия)
  • Хромато-масс-спектрометр
  • Системы ВЭЖХ-масс-спектрометр
  • Жидкостная хроматография ; Колонки для ВЭЖХ

Ссылки

  • Масс-спектрометрия (англ.)

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Масс-спектрометрия" в других словарях:

    - (масс спектроскопия, масс спектральный анализ), метод анализа в ва путем определения массы (чаще, отношения массы к заряду m/z) и относит. кол ва ионов, получаемых при ионизации исследуемого в ва или уже присутствующих в изучаемой смеси.… … Химическая энциклопедия

    Вид физ. анализа вещества, основанный на разделении пучка ионизированных частиц по массам в специальном анализаторе (масс магнитном или электрическом). Выбор типа анализатора и самого прибора (см. Масс спектрометр) определяется задачей, стоящей… … Геологическая энциклопедия

Масс-спектрометрия – это способ изучения веществ, вычислением массы и числа ионов при ионизации вещества.

Навигация:

Оборудование, которым производится масс-спектрометрия, является масс-спектрометр. Он анализирует образец и предоставляет данные в виде графиков (масс-спектров).

Таким путем можно исследовать любой материал, который поддается ионизации.

Широкое применение масс-спектрометрия приобрела в таких сферах, как:

  • медицина и фармацевтика;
  • генная инженерия и биохимия;
  • химическая индустрия;
  • пищевая индустрия;
  • косметические и парфюмерные разработки;
  • лабораторная диагностика для определения веществ в криминалистике, контроле на допинги, экологии;
  • изготовление полимерных и пластиковых материалов;
  • полупроводниковая индустрия;
  • ядерная энергетика;
  • металлургическое производство;
  • нефтеперерабатывающая и нефтехимическая индустрия;
  • биология, геология, гидрология, минералогия и другие отрасли.

Пути исследования масс-спектрометрией в разных сферах различаются в зависимости от того, какие данные необходимо получить в итоге.

Масс-спектрометрией можно получить следующие данные:

  • установить структуру соединения;
  • исследование вещества на компоненты;
  • установить возраст геологической породы по обследованию состава изотопов;
  • хромато-масс-спектральный анализ для экологической сферы;
  • исследовать ионизационные процессы, ионные реакции;
  • измерять потенциал и энергию молекул.

Преимуществом метода масс-спектрометрии является то, что для исследования хватает совсем маленькое количество вещества.

Недостаток же состоит в разрушении материала, которое исследуется, т.е. анализируются продукты превращения.

Примечание. Масс-спектрометрический метод по сути не относится к спектрометрическому методу, так как отсутствует взаимодействие образца с электромагнитным излучением. Но из-за графического вида зависимости силы ионного потока от отношения массы к заряду, который похож на спектр, этот метод и получил свое название.

Очень доступно и подробно масс-спектрометрия освещается в учебных пособиях, вроде Лебедев А.Т. «Масс-спектрометрия в органической химии».

Метод масс-спектрометрии

Метод масс-спектрометрии заключается в последовательном выполнении следующих операций:

  1. Ионизация вещества, а именно лишение молекул хотя бы одного иона. Масса его ниже массы молекулы во много раз, поэтому он никак не повлияет на результат исследования.
  2. Разгон заряженных частиц в вакуумной среде в электрическом поле с последующим перемещением их в магнитное поле.
  3. Анализ перемещения частиц в магнитном поле, а именно их скорость, искривление траектории движения. Больше заряженные частицы быстрее разгоняются и лучше реагируют на магнит. Частицы с большой массой не такие управляемые из-за инерции движения.

Примечание. Вакуум необходим для свободного перемещения заряженных частиц и предотвращая превращения их в назад в незаряженные.

Ионизация образцов может производится несколькими путями и зависит от требуемой цели.

Существуют такие методы ионизации в масс-спектрометрии:

  1. Электронный удар – приспособлен для изотопного и молекулярного анализа неорганических материалов.
  2. Химическая ионизация – для изучения органических материалов.
  3. Электроспрей.
  4. Лазерное излучение.
  5. Бомбардировка пучком ионов.

Последние три метода используются для исследования веществ с крупными молекулами.

Кроме того, способ ионизации разделяется еще на несколько видов по состоянию вещества перед исследованием, а именно газ, жидкость или твердое вещество.

Газовое состояние (фаза) образца проводится такими способами ионизации:

  • электронная (изотопная масс-спектрометрия);
  • химическая;
  • электронный захват;
  • ионизация в электрическом поле.

Жидкое состояние (фаза) образца проводится такими способами ионизации в масс-спектрометрии:

  • термоспрей;
  • на открытом воздухе;
  • электроспрей;
  • химическая на открытом воздухе;
  • фотоионизация.

Твердое состояние (фаза) образца проводится такими способами ионизации:

  • прямая лазерная десорбция;
  • матрично-активированная лазерная десорбция/ионизация (МАЛДИ масс-спектрометрия);
  • масс-спектрометрия вторичных ионов (ионная масс-спектрометрия);
  • бомбардировка быстрыми атомами;
  • десорбция в электрическом поле;
  • плазменная десорбция;
  • ионизация в индуктивно-связанной плазме (масс-спектрометрия с индуктивно-связанной плазмой);
  • термоионизация (поверхностная ионизация);
  • ионизация в тлеющем разряде (искровая ионизация);
  • ионизация в процессе лазерной абляции.

Последние четыре варианта являются достаточно жесткими, но без них невозможно получить ионы в пробах с очень прочными связями.

Масс-спектрометрический гелиевый течеискатель

Очень широко практикуется метод масс-спектрометрии в гелиевых течеискателях, например, ПТИ-10, ТИ1-50 и другие.

Изучаемые системы или емкости заполняются гелием и потом с помощью масс-спектрометрического метода разыскиваются места, где через щели просачивается гелий.

Чувствительность масс-спектрометрического метода позволяет находить даже очень незначительные течи инертного газа в очень маленьком количестве, поэтому гелиевый масс-спектрометрический течеискатель является одним из самых точных и используемых приборов в промышленности.

Метод хромато-масс-спектрометрии

Метод хромато-масс-спектрометрии – это тандемная масс-спектрометрия хроматографии и масс-спектрометрии, т.е. сочетание этих двух методов.

Хроматография занимается разбиением молекул на заряженные частицы, а масс-спектрометрия анализирует их.

Существует два вида хромато-масс-спектрометрии:

  • газовая;
  • жидкостная.

Определение методом хромато-масс-спектрометрией состава органических веществ, которые чаще всего многокомпонетные, является, пожалуй, единственным доступным методом. Самым лучшим считается совокупность газовой хроматографии и ионного детектора масс-спектрометра.

Именно поэтому хромато-масс-спектрометрия получила большое потребление в медицинской практике для диагностирования и анализа заболеваний и их возбудителей, в том числе определение микробиоценоза разных органов любого сосредоточения методом хромато-масс-спектрометрии или масс-спектрометрия микробных маркеров биологических материалов (крови, моче и прочем). Микробиоценоз методом хромато-масс-спектрометрии предоставляет возможность выявить множество микробов, которые невозможно определить другими методами, даже те, которые находятся в спящем состоянии в защитных капсулах. А, следовательно, люди получают возможность воспользоваться правильным и своевременным лечением, что невозможно переоценить.

Кроме этого, хромато-масс-спектрометрия обширно применяется в фармацевтике для создания новых лекарств, химической промышленности, экологической сфере для оценки проб окружающей среды, генной инженерии, техническом контроле разных областей промышленности, лабораторных обследованиях на присутствие в крови запрещенных препаратов и прочее.

Газовая хроматография

Газовая хроматография масс-спектрометрия предусматривает добавление инертного газа-носителя (зачастую это гелий), который является подвижным элементом. Исследуемое вещество является неподвижным элементом.

Газовая масс-спектрометрия позволяет анализировать газы, жидкости и твердые вещества, у которых молекулярная масса ниже 400. Еще исследуемые вещества должны обладать требуемыми летучими, инертными и термостабильными свойствами.

Схема газового хроматографа предложена на схеме ниже.

Спектрометрический анализ

Спектрометрический анализ протекает в масс-анализаторах и детекторах масс-спектрометров.

Масс-анализаторы бывают непрерывные и импульсные. Разнятся они тем, что поступление в них ионов проводиться постоянно (непрерывно) или порциями, соответственно.

К непрерывным анализаторам принадлежат магнитный и квадрупольный, к импульсным – ионная ловушка, времяпролетный масс-анализатор и анализатор ионно-циклотронного резонанса с Фурье-преобразованием.

Основная задача анализатора - это перераспределение ионов с разными параметрами движения.

После этого ионы попадают в детектор, который регистрирует разные спектры ионов.

Чаще всего в качестве детекторов используется диодный вторично-электронный умножитель или фотоумножитель. Первый регистрирует количественные показатели различных ионов пучками электронов, второй регистрирует мерцание от бомбардировки ионами люминофора.

Существуют также другие виды детекторов, это микроканальные множители, системы типа диодных матриц и коллекторы.

Что такое масс-спектрометр

Масс-спектрометром называется вакуумное оборудование, которое способно анализировать вещество по законам перемещения заряженных частиц в магнитном и электрическом поле.

В упрощенном виде описание масс-спектрометра можно представить так: основные компоненты прибора – это ионный источник, масс-анализатор и детектор.

Ионный источник превращает обычные молекулы пробного образца в заряженные частицы и помещает их в электрическое и магнитное поле для ускорения.

Масс-анализатор делит ионы на группы по скорости движения, а именно по времени перемещения на какое-то расстояние.

Детектор регистрирует данные по относительному количеству каждой группы.

Кроме основных компонентов масс-спектрометр оснащается еще вакуумными установками с насосом и вентилятором для выработки вакуума, манометром, системой для установки пробного образца, электронной схемой, индикаторами, стабилизатором и прочим.

В зависимости от ионизации вещества, масс-спектрометры бывают статическими и динамическими.

Также существуют масс-спектрометры с двумя масс-анализаторами, т.е. тандемные спектрометры. Они используются в основном при мягких способах ионизации.

Данный метод принципиально отличается от рассмотренных выше спектроскопических методов. Структурная масс-спектрометрия основана на разрушении органической молекулы в результате ионизации тем или иным способом.

Образующиеся ионы сортируются по величинам их отношения масса/заряд (m/z), затем регистрируется число ионов для каждого значения этого отношения в виде спектра. На рис. 5.1. представлена общая схема типичного масс-спектрометра.

Рис. 5.1. Блок-схема типичного масс-спектрометра

Для ведения пробы в масс-спектрометр обычно применяют какой-либо вид хроматографии, хотя во многих приборах есть возможность для прямого ввода образца в ионизационную камеру. Во всех масс-спектрометрах имеются устройства для ионизации пробы и разделения ионов по величине m/z. После разделения нужно детектировать ионы и измерять их количество. Типичный коллектор ионов состоит из коллимирующих щелей, которые направляют в коллектор в данный момент только ионы одного вида, где они детектируются, а сигнал детектирования усиливается электронным умножителем. Современные масс-спектрометры укомплектованы специализированным программным обеспечением: компьютеры контролируют накопление, хранение и визуализацию данных.

В настоящее время стала обычной практика объединения масс-спектрометра с газовым (ГХ-МС) или жидкостным (ЖХ-МС) хроматографом.

Все масс-спектрометры подразделяются на два класса: приборы низкого (единичного) и высокого разрешения (R). Спектрометры низкого разрешения – приборы, на которых можно разделить целые массы до m/z 3000 (R = 3000/(3000-2990) = 3000). На таком приборе соединения C 16 H 26 O 2 и С 15 Н 24 NO 2 неразличимы, поскольку прибор будет фиксировать и в первом и во втором случае массу 250.

Приборы высокого разрешения (R = 20000) смогут различить соединения C 16 H 26 O 2 (250.1933) и С 15 Н 24 NO 2 (250.1807), в этом случае R = 250.1933/(250.1933 – 250.1807) = 19857.

Таким образом, на приборах низкого разрешения можно устанавливать структурную формулу вещества, однако зачастую для этой цели дополнительно необходимо привлекать данные других методов анализа (ИК-, ЯМР-спектроскопия).

Приборы высокого разрешения могут измерять массу иона с точностью, достаточной для определения атомного состава, т.е. определять молекулярную формулу исследуемого вещества.

В последнее десятилетие происходило быстрое развитие и совершенствование масс-спектрометров. Не обсуждая их устройство, отметим, что они подразделяются по типам в зависимости от 1) способа ионизации, 2) метода разделения ионов. В общем, способ ионизации не зависит от метода разделения ионов и наоборот, хотя имеются исключения. Более полная информация по данным вопросам изложена в литературе [Сайнсб. Лебедев].

В данном пособии будут рассмотрены масс-спектры, полученные ионизацией электронным ударом.

5.2. Масс-спектры с ионизацией электронным ударом

Электронный удар (ЭУ, electron impact, EI) – наиболее распространенный метод ионизации в масс-спектрометрии. Преимуществом этого метода является возможность использования поисковых систем и баз данных (метод ЭУ был исторически первым методом ионизации, основные базы экспериментальных данных получены на приборах с ЭУ).

Молекула вещества пробы в газовой фазе подвергается бомбардировке электронов с высокой энергией (обычно 70 эВ) и выбрасывает электрон, образуя катион-радикал, называемый молекулярным ионом :

М + e → М + (молекулярный ион) + 2e

Наименьшая энергия бомбардирующих (ионизующих) электронов, при которой возможно образование из данной молекулы иона, называется энергией (или, менее удачно, «потенциалом») ионизации вещества (U e).

Энергия ионизации является мерой прочности, с какой молекула удерживает наименее сильно связанный с ней электрон.

Как правило, для органических молекул энергия ионизации составляет 9-12 эВ, поэтому бомбардировка электронами с энергией 50 эВ и выше сообщает избыточную внутреннюю энергию возникающему молекулярному иону. Эта энергия частично рассеивается за счет разрыва ковалентных связей.

В результате такого разрыва происходит распад молекулярного иона на частицы меньшей массы (фрагменты). Такой процесс называется фрагментацией .

Фрагментация происходит избирательно, является высоковоспроизводимой и характеристичной для данного соединения . Более того, процессы фрагментации предсказуемы, и именно они обуславливают широкие возможности масс-спектрометрии для структурного анализа. По-сути, структурный анализ методом масс-спектрометрии заключается в идентификации осколочных ионов и ретроспективном восстановлении структуры исходной молекулы, исходя из направлений фрагментации молекулярного иона. Так, например, метанол образует молекулярный ион по схеме:

О
дна точка – оставшийся нечетный электрон; когда заряд локализован на отдельном атоме, знак заряда указывается на этом атоме.

Многие из этих молекулярных ионов распадаются за время 10 -10 – 10 -3 с и дают ряд осколочных ионов (первичная фрагментация):

Если некоторые из молекулярных ионов имеют достаточно большое время жизни, то они достигают детектора и регистрируются в виде пика молекулярного иона. Поскольку заряд исходного иона равен единице, отношение m / z для этого пика дает молекулярную массу исследуемого вещества.

Таким образом, масс-спектр – это представление относительных концентраций положительно заряженных осколков (включая молекулярный ион) в зависимости от их масс .

В специальной литературе приводятся таблицы наиболее часто встречающихся фрагментных ионов, где указана структурная формула иона и его значение m/z [Преч, Гордон, Сильверстейн].

Высота наиболее интенсивного в спектре пика принимается за 100%, а интенсивности других пиков, включая пик молекулярного иона, выражаются в процентах от максимального пика.

В определенных случаях самым интенсивным может быть и пик молекулярного иона. В общем случае: интенсивность пика зависит от устойчивости образующегося иона .

В масс-спектрах часто присутствует серия пиков фрагментных ионов, различающихся на гомологическую разность (СН 2), т.е. 14 а.е.м. Гомологические серии ионов характерны для каждого класса органических веществ, а потому они несут важную информацию о структуре исследуемого вещества.