Компания «СканСервис Проект» Компания «СканСервис Проект» 2018-04-11T14:31:16+03:00 2018-04-11T14:31:16+03:00 https://сайт/userfls/editor/large/235_reuddot.jpg

Лазерное сканирование зданий, домов и различных сооружений выполняется с помощью 3D сканера в результате работы которого получается облако точек. Каждая точка имеет пространственную координату и цвет. После так называемого шитья нескольких баз сканирование облако точек может иметь вес от гигабайта до 10-20 гб в зависимости от настроек сканирования и количество баз сканирование. После это облака точек возможно, при наличии мощного компьютера, просматривать в AutoCAD, ArchiCAD, Revit, 3D Max, ReCap и других программах . После относительно минимальной обработки возможно выполнение ортофотопланов - растрового изображения, например, фасада, спроецированная на плоскость и имеющая масштаб и координаты. И самое главное позволяет выполнить высокоточные чертежи модели зданий и сооружений и других объектов.

Примеры работ по лазерному сканированию зданий

Трехмерное лазерное сканирование позволяет получить высокоточные чертежи различных объектов. Наши сотрудники проведут лазерный обмер помещений по доступной стоимости в Москве и Московской области, с дальнейшей обработкой полученного результата на компьютере. Наши услуги доступны для каждого.

Архитектурные обмеры объектов культурного наследия, зданий и сооружений выполняется с помощью высокоточного оборудования: 3D сканеров и Leica 3D Disto, что позволяет получить точные обмеры объектов. Очень часто в роли таких объектов поступают здания и сооружения со сложной архитектурой, которая вызывают сложность при выполнении обмеров теодолитами, тахеометрами и другими геодезические приборами. Наши приборы и опыт работы позволяют выполнить данные работы с максимальной точностью. По результатам обмерных работ наши специалисты могут подготовить не только поэтажные планы, разрезы , фасады, планы кровли и т.д., но и можем быстро и качественно создать точную 3D модель объекта. Для бюджетных организаций выполним расчет стоимости работ по сметным нормативам и закрытие объёмов выполненных работ согласно КС-2 и КС-3.

Примеры работ по архитектурным обмерам

Мы четко понимаем, из каких этапов состоят архитектурные обмеры. Ни в коем случае не навязываем другие услуги и не берем дополнительную плату за работу, которая уже входит в данную услугу. Сначала наши специалисты подготавливают техническое задание, после этого проводят замеры уже на объекте и подготавливают необходимые чертежи.

Мы готовы сделать обмеры любой точности, сложности и площади: небольшие наброски и понятные схематические изображения, детальные и точные обмеры. Стоимость такой услуги зависит от того, какая площадь объекта, наш менеджер поможет вам в расчетах.

ОБМЕРЫ ДЛЯ BIM МОДЕЛЕЙ

Информационное моделирование здания BIM (Building Information Modeling) это трёхмерная модель строительного объекта, здания, связанная с информационной базой данных, в которой каждому элементу модели можно присвоить дополнительные атрибуты. Особенность такого подхода заключается в том, что строительный объект проектируется фактически как единое целое. И изменение какого-либо одного из его параметров влечёт за собой автоматическое изменение остальных связанных с ним параметров и объектов, вплоть до чертежей, визуализаций, спецификаций и календарного графика. В нашей стране разработана дорожная карта поведение BIM технологии в строительстве до 2020 года. Наши специалисты работают в системе BIM моделирования Autodesk Revit. Модель будет выполнена по результатам сканирования из облаков точек.

Для создания, обработки и хранения информации о конструкции, особенностях эксплуатации и текущем техническом состоянии используется комплексная система моделирования здания (рус. аббр. — БИМ). Комплексность BIM заключается в полноте информации о строительном объекте: начиная от геологического и геодезического описания, заканчивая фактическими размерами здания и коммуникаций.

Создание информационной модели

Цифровая модель здания или сооружения создается на разных стадиях «жизни» объекта:

  • На стадии проектирования с помощью САПР и становится неотъемлемой частью генерального проекта. В состав пакета информации входят: строительные расчеты, проектная и сметная документация.
  • На стадии строительства производятся измерения фактических значений размеров объекта. Для обмера применяются сертифицированные устройства, формат данных которых совместим с форматом BIM. Обмер производится на ключевых этапах строительства.
  • На стадии эксплуатации ведется мониторинг состояния здания или сооружения. Периодичность и объем проверки и обмера объекта определяется генеральным планом.

Формат данных на всех стадиях создания информационной модели согласован и поддается корректировке и/или обновлению в автоматизированном режиме.

Современные задачи, возникающие при проектировании, строительстве, эксплуатации зданий и сооружений требуют представления данных в трёхмерном пространстве, с высокой точностью и полнотой описывающих взаимное расположение частей зданий, сооружений, ситуацию и рельеф. Использование традиционных методов и инструментов (тахеометров, ГНСС-систем) позволяет решать рядовые задачи. Однако всё чаще возникают запросы, требующие полноценного 3х мерного моделирования. К таким сферам относится сопровождение информационного моделирования зданий и сооружений - BIM, фасадные съёмки, цифровые чертежи цехов, заводов. С появлением и развитием технологии лазерного сканирования задача построения 3D цифровых моделей значительно упростилась.

Наземное лазерное сканирование

Лазерное сканирование на сегодняшний момент делится на наземное (НЛС), мобильное (МЛС или мобильное картографирование) и воздушное (ВЛС). Предметом настоящей статьи является наземное лазерное сканирование, которое считается самым быстрым и высокопроизводительным средством получения точной и наиболее полной информации о пространственном объекте сложной формы: зданиях, промышленных сооружениях и площадках, памятниках архитектуры, смонтированном технологическом оборудовании. Суть технологии сканирования заключается в определении пространственных координат объекта при помощи лазерного сканера. Процесс реализуется посредством измерения углов и расстояний до всех определяемых точек с помощью измерений лазерным лучом до отражающих поверхностей с нескольких точек сканирования с перестановкой прибора. Измерения производятся с очень высокой скоростью - наиболее современные приборы производят измерения со скоростью от одного миллиона точек в секунду.

Лазерный сканер Trimble TX8 позволяет выполнять измерения с миллиметровой точностью и скоростью до 1 млн точек в секунду

Управление работой лазерного сканера осуществляется с помощью ноутбука или планшета с набором программ, или с помощью сенсорной панели управления, встроенной в сканер. Полученные координаты точек из сканера создают так называемое облако точек.


Облако точек, полученное при лазерном сканировании здания

Сканер имеет определенную область обзора. Чаще всего они имеют встроенную цифровую фото-видеокамеру. С помощью камеры можно выделять необходимую область сканирования, либо проводить визуальный контроль качества и полноты собранных данных. Также фотокамера используется для раскрашивания облака точек в естественные цвета.

Работа по сканированию происходит с нескольких точек стояния (так называемых станций сканирования) для получения полной информации о форме объектов, потому что сложный объект зачастую не виден с одной точки наблюдения. На стадии полевых работ необходимо предусмотреть зоны взаимного перекрытия сканов. При этом перед началом сканирования в этих зонах часто размещают специальные мишени - цели. Для объединения сканов, выполненных с различных точек, используют процесс сшивки, который может происходить с использованием координат этих мишеней, либо с использованием машинного зрения непосредственно по облакам точек. Лазерное сканирование предоставляет возможность получить максимум информации о геометрической структуре объекта. Его результатом являются сшитые облака точек и 3D модели с высокой степенью детализации (пространственное разрешение - до нескольких миллиметров).


Трёхмерная модель здания

Наземное лазерное сканирование значительно отличается от других методов сбора пространственной информации. Среди отличий выделим несколько основных:

  • полная реализация принципа дистанционного зондирования, позволяющего собирать информацию об исследуемом объекте, находясь на расстоянии от него;
  • максимальная полнота и подробность получаемой информации;
  • высокая скорость получения информации - съемка на одной точке занимает от 2х до 10 минут (в зависимости от плотности), совокупная скорость полевых и офисных работ в несколько раз выше обычной;
  • стоимость съёмки и моделирования объектов ниже, чем при использовании классических технологий примерно в 3 раза.

Благодаря своей универсальности и высокой степени автоматизации процессов измерений лазерный сканер является инструментом оперативного решения самого широкого круга прикладных инженерных задач.

BIM - информационное моделирование зданий

Наиболее актуальной технологией, в которой применяется лазерное сканирование, является BIM - информационное моделирование зданий.

Технология информационного моделирования является самым передовым решением в строительной отрасли при возведении, эксплуатации и реконструкции зданий и сооружений, предполагающий комплексную обработку в трехмерном представлении всей архитектурно-проектной, конструкторской, технологической, экономической и иной информации о здании, когда здание и все, что имеет к нему отношение, рассматривается как единый объект. Внедрение данной технологии значительно повышает качество проектирования и упрощает работу на всех этапах жизненного цикла объекта.

Лазерное сканирование применяется в BIM при изысканиях на первых этапах проекта, контроле процесса строительства, оценке результата строительства и актуализации BIM модели по фактическим данным.

Рассмотрим подробнее этапы проверки и актуализации BIM-модели по данным наземного лазерного сканирования.

Первым этапом является непосредственно лазерное сканирование. При этом сканирование может выполняться с требуемой плотностью. После завершения сканирования данные необходимо передать в программу обработки данных лазерного сканирования, например, Trimble RealWorks , и выполнить сшивку отдельных сканов в единое облако точек. При правильной организации процесса сканирование сшивка данных выполняется в полностью автоматическом режиме. При необходимости выполняется привязка сшитого облака точек к системе координат объекта. Программное обеспечение Trimble Real Works позволяет отображать данные лазерного сканирования в трехмерном виде в различных заливках (белый цвет, градации серого, реальный цвет, окрас по интенсивности отраженного сигнала, заливка по высоте, заливка по цветовой классификации и т.д.) и при необходимости перемещаться по нему, выполняя измерения.

Результат лазерного сканирования с плотностью 3 см на 10 метров. Облако точек раскрашено по интенсивности отраженного сигнала

Вторым этапом является наложение полученного облака точек на цифровую модель здания для последующего визуального анализа и инспектирования отклонений данных съемки от проекта. Наложение, визуальный анализ и инспектирование можно выполнить как в программе Trimble RealWorks , так и в стороннем программном обеспечении, например Autocad Navisworks. Для этого необходимо выполнить экспорт облака точек в одном из стандартных форматов, например las или rcp.

Поддерживаемые форматы экспорта

Третьим этапом является оценка отклонений, отображение отклонений на различных сечениях, подготовка отчетов.

Графическая оценка ровности пола по данным лазерного сканирования


На окончательном этапе в используемой программе для BIM-проектирования при необходимости можно выполнить актуализацию исходной BIM-модели по фактическим данным.

Как и любая иная технология, лазерное сканирование является отличным решением, ровно настолько, насколько хорошо не только применяемое оборудование и программное обеспечение, но, что важнее, мастерство специалистов, использующих его. Поэтому при выборе решений обращайте внимание не только на технические характеристики оборудование, но и на опыт компании, которая его поставляет.

Компания ПРИН ведет свою историю с 1990 года и предлагает лазерные сканеры различного назначения - НЛС , МЛС , программные продукты для обработки данных лазерного сканирования, а также проводит обучение по работе с приобретаемым оборудованием и пуско-наладку поставляемого оборудования на вашем объекте.

25 /01
2019

TBC 5.0 Стоит ли переходить? 10 причин «За»!

В последнее время мы стали получать достаточно много обращений от пользователей, которые планируют перейти на последнюю версию Trimble Business Center 5.0, но перед этим хотели бы понять, действительно ли стоит обновляться до новой версии или лучше следовать поговорке «Старый конь борозды не портит» и остаться на привычной устаревшей версии.

Сегодня в геодезии для разрешения разнообразных архитектурных и строительных ситуаций применяются инновационные трехмерные лазерные 3D сканеры. Программные комплексы, такие как Leica Cyclon, позволяют оперативно и эффективно обрабатывать полученные данные.

Сканирование фасадов строений

Геодезическая съемка дает возможность получать данные для последующего выполнения монтажных и строительных операций над лицевой частью объекта. С помощью инновационных методик съемка фасадов осуществляется оперативно и сверхточно, не зависимо от сложности проектирования. Сканирование фасадов позволяет оценить качество и правильность выполненных монтажных мероприятий. Кроме того, лазерное сканирование объектов эффективно при выполнении работ по их реконструкции - оно обеспечивает воссоздание былого вида уникального здания или сооружения с высочайшей точностью.

Фасадные чертежи

Полученные результаты при выполнении геодезической съемки оформляются в виде чертежей. Они могут выполняться в любом масштабе, удобном для заказчика. В данной документации отображается основная информация о фасаде (размеры, степень отклонения от плоскости).

Чертежи и модели элементов декора

При детальном лазерном сканировании элементов декора, которое совмещается с поэтапным просмотром всей конструкции, по запросу заказчика можно получить общий чертеж здания или чертеж-развертку с просмотром сечений в любых местах строения. Сканирование отдельных элементов позволяет создать шаблоны, чертежи, а также сечения отдельных деталей, произвести фиксацию утраченных элементов. Современные технологии позволяют сверхточно сканировать тонкую гравировку, а также строить чертежи, соответствующие реальному объекту, даже с учетом утраченных элементов декора.

Обследование сооружений и зданий

Основа безопасной эксплуатации любого сооружения состоит в его предварительном техническом обследовании. Оно включает в себя ряд расчетов и исследований, на основании которых принимаются дальнейшие решения. Вовремя выявленные с помощью лазера дефекты конструкций и причины их появления позволяют увидеть всю картину в целом, исследовать здание в разрезе.

Формирование дефектных ведомостей и создание отчета

Успешному составлению дефектных ведомостей предшествует предварительное обследование строения, выявление типов повреждений и оптимальной точности измерений, а также формата представления данных. С помощью полученного облака точек можно детально вычертить модель и увидеть все недочеты, изъяны здания или сооружения, полученные в процессе строительства или эксплуатации. Просчитать углы отклонения и сделать все необходимые замеры.

Метод составления дефектных ведомостей с помощью лазерного сканирования отличается высочайшей точностью. Как отчетную документацию, заказчик получает файлы 3D моделей и их бумажные распечатки (аксонометрические или перспективные проекции общих видов и разрезов).

Обмерные работы. Создание планов и разрезов

Для произведения обмеров фасадов строений применяется технология, объединяющая в себе методы сканирования лазером и цифровой фотограмметрии. В этом случае съемка производится сканером со встроенным фотоаппаратом. Примерные действия по выполнению работы:

  • составление программы
  • закрепление опорных точек с последующим определением их координат
  • непосредственно произведение лазерного сканирования и процесс фотографирования здания с заданных точек
  • создание единого блока точек из каждого отдельного сканера

Полученные чертежи передают реальную картину и размеры сооружений, с возможностью измерить любой отдельный элемент. На основе полученной 3D модели можно получить необходимые планы конструкций.

Метод лазерного сканирования позволяет проводить точные обмеры в краткие сроки и получить полную информацию об объекте в едином массиве облака точек или 3D проекта. Это существенно упрощает процесс использования и управления информацией, а также дает возможность получать любые данные из одного источника. При совместном применении разнообразных методов и технологий появляется возможность сопровождать проекты удобной в использовании и исчерпывающей по содержанию документацией, что облегчает выполнение работ.

В последнее время все большее применение находит технология наземного лазерного сканирования. Многие современные задачи проектирования и строительства, эксплуатации зданий и сооружений требуют представления пространственных данных, точно и полно описывающих рельеф, ситуацию, взаимное расположение частей зданий и сооружений. Использование традиционных для геодезии методов и инструментов позволяет решать большинство задач, однако существуют ограничения, связанные с тяжелыми условиями видимости, со скоростью сбора и обработки получаемых при помощи электронных тахеометров данных.

Появление GNSS-технологий, позволяющих буквально за считанные минуты получить точные координаты местоположения точек (режим RTK), а также безотражательных тахеометров, имеющих возможность работать без применения специальных отражателей, стало важным технологическим прорывом в области геодезических измерений. Однако применение спутниковых геодезических приемников и безотражательного тахеометра не позволяло с максимальной точностью описывать объект съемки и строить полноценную цифровую модель - координатные данные были точными, но слишком разреженными. На построение трехмерных цифровых моделей фасадов зданий или чертежей цехов требовались значительные временные ресурсы, работы получались трудоемкими и дорогостоящими. С появлением новой технологии - ЛАЗЕРНОГО СКАНИРОВАНИЯ - задача построения 3D цифровых моделей значительно упростилась.

Наземное лазерное сканирование является самым оперативным и высокопроизводительным средством получения точной и наиболее полной информации о пространственном объекте: памятнике архитектуры, промышленном сооружении и промышленной площадке, смонтированном технологическом оборудовании. Суть технологии сканирования заключается в определении пространственных координат точек объекта. Процесс реализуется посредством измерения расстояния до всех определяемых точек с помощью фазового или импульсного безотражательного дальномера. Измерения производятся с очень высокой скоростью - тысячи, сотни тысяч, а порой и миллионы измерений в секунду. На пути к объекту импульсы лазерного дальномера сканера проходят через систему, состоящую из одного подвижного зеркала, которое отвечает за вертикальное смещение луча. Горизонтальное смещение луча лазера производится путем поворота верхней части сканера относительно нижней, жестко прикрепленной к штативу. Зеркало и верхняя часть сканера управляются прецизионными сервомоторами. В конечном итоге именно они обеспечивают точность направления луча лазера на снимаемый объект. Зная угол разворота зеркала и верхней части сканера в момент наблюдения и измеренное расстояние, процессор вычисляет координаты каждой точки.

Все управление работой прибора осуществляется с помощью портативного компьютера с набором программ или с помощью панели управления, встроенной в сканер. Полученные координаты точек из сканера передаются в компьютер и накапливаются в базе данных компьютера или самого сканера, создавая так называемое облако точек.

Сканер имеет определенную область обзора, или другими словами, поле зрения. Предварительное наведение сканера на исследуемые объекты происходит либо с помощью встроенной цифровой фотокамеры, либо по результатам предварительного разреженного сканирования. Изображение, получаемое цифровой камерой, передается на экран компьютера, и оператор осуществляет визуальный контроль ориентирования прибора, выделяя необходимую область сканирования.

Работа по сканированию часто проходит в несколько сеансов из-за формы объектов, когда все поверхности просто не видны с одной точки наблюдения. Самый простой пример - четыре стены здания. Полученные с каждой точки стояния сканы совмещаются друг с другом в единое пространство в специальном программном модуле. На стадии полевых работ необходимо предусмотреть зоны взаимного перекрытия сканов. При этом перед началом сканирования в этих зонах размещают специальные мишени. По координатам этих мишеней и будет происходить процесс «сшивки». Можно совместить облака точек без мишеней, используя характерные точки снимаемого объекта. Лазерное сканирование предоставляет возможность получить максимум информации о геометрической структуре объекта. Его результатом являются 3D модели с высокой степенью детализации, плоские чертежи и разрезы.

Наземное лазерное сканирование значительно отличается от других методов сбора пространственной информации. Среди отличий выделим три основных:

  • в технологии полностью реализован принцип дистанционного зондирования, позволяющий собирать информацию об исследуемом объекте, находясь на расстоянии от него, т.е. на объекте не надо устанавливать никаких дополнительных устройств и приспособлений (марок, отражателей и т.п.);
  • по полноте и подробности получаемой информации с лазерным сканированием не может сравниться ни один из ранее реализованных методов, плотность и точность определяемых на поверхности объекта точек может исчисляться долями миллиметра;
  • лазерное сканирование отличается непревзойденной скоростью - до нескольких сотен тысяч измерений в секунду

Благодаря своей универсальности и высокой степени автоматизации процессов измерений лазерный сканер является не просто геодезическим прибором, лазерный сканер - это инструмент оперативного решения самого широкого круга прикладных инженерных задач.

Сама технология лазерного сканирования открывает целый ряд новых, ранее недоступных возможностей. Связано это, прежде всего, с более полным использованием современных компьютерных технологий. Получаемые результаты в виде облака точек или трехмерной модели можно быстро передвигать, масштабировать и вращать. Есть возможность виртуального путешествия по изображению с записью в стандартный мультимедийный файл для дальнейшего показа. Такого полного представления об объекте не может дать ни один другой метод. При этом мы работаем не просто с изображением, а именно с моделью, сохраняющей полное геометрическое соответствие форм и размеров реального объекта. Такое положение дел обеспечивает возможность проведения измерений реальных расстояний между любыми точками или элементами модели. Несмотря на исключительную новизну, технология предусматривает возможность автоматического или полуавтоматического получения информации и документов в привычном виде - чертежи профилей, поперечников, планы, схемы.Возможность обмена через общепринятые форматы графических данных позволяет легко встроить технологию лазерного сканирования в схему уже используемого программного обеспечения.

Технология лазерного сканирования открывает новые возможности и дает необходимую информацию для развития современного метода трехмерного проектирования.

Где можно использовать лазерное сканирование?

Основные сферы применения трехмерного сканирования:

  • промышленные предприятия
  • строительство и архитектура
  • дорожная съемка
  • горное дело
  • мониторинг зданий и сооружений
  • документирование чрезвычайных ситуаций

Мы предлагаем широкий спектр . Более того, Вы можете получить исчерпывающую информацию по всем аспектам приобретения, использования и обслуживания у наших специалистов по контактной информации.

При разработке данного материала были использованы материалы

Технические проблемы с проведением обмерных работ архитектуры

Трехмерное лазерное сканирование стремительно становится неотъемлемой частью производства обмерных работ при подготовке проектов реставрации зданий и сооружений - объектов культурного наследия.

Очевидные преимущества технологии 3D лазерного сканирования:
- автоматическое представление результатов обмеров в цифровом виде;
- беспрецедентная скорость съемки (количество измерений до 1,2 миллионов измерений в секунду);
- высочайшая детальность лазерной съемки (шаг измерений 1–2 мм);
- выполнение обмерных работ без необходимости монтажа строительных лесов;
- автоматическая фотофиксация объекта съемки, совмещенная с процессом обмерных работ;
Всё это ставит эту технологию лазерного сканирования вне конкуренции по сравнению с традиционными методиками зданий и сооружений.

Благодаря указанным выше преимуществам, обмерные работы на объектах исторического наследия выполняются значительно быстрее и, в конечном итоге, гораздо качественнее и дешевле, чем с применением любых традиционных технологий.

Эта статья является собственностью компании «НГКИ». При использовании любых материалов с этого ресурса ссылка на сайт www.!

Компания «НГКИ» выполняет архитектурные обмеры с применением лазерного сканирования с 2003 года

Инженерная компания «НГКИ» занимается архитектурными обмерами зданий и сооружений с применением лазерного сканирования начиная с момента ввоза первых 3D лазерных сканеров в Россию в 2003 году.

По результатам съемки с применением лазерного сканирования наша компания выпускает общепринятые комплекты исполнительных чертежей:
- чертежи фасадов;
- планы кровли;
- поэтажные планы;
- горизонтальные и вертикальные разрезы и сечения;
- чертежи интерьеров;
- чертежи/шаблоны элементов декора.

Эта статья является собственностью компании «НГКИ». При использовании любых материалов с этого ресурса ссылка на сайт www.!

Результаты обмерных работ с помощью лазерного сканирования и построение обмерных чертежей

Объем и качество измерений, выполняемых современными лазерными сканирующими системами, дают возможность, в отличие от фотосъемки, без увеличения временных затрат на дополнительные измерения получать высокоточную и достоверную информацию о размерах и объемах утрат и переносить их на обмерные чертежи.

Первичным результатом выполнения обмерных работ с помощью 3D лазерного сканирования является единое облако точек измерений, получаемое путем «сшивания» и объединения облаков измерений, получаемых на каждой из точкек установки 3D лазерного сканера. Сшитое и очищенное от помех облако точек измерений является важным источником информации обо всех геометрических параметрах элементов обмеряемого объекта. В случае, если после завершения подготовки обмерных чертежей облака точек измерений сохраняются, то исполнитель обмерных работ или Заказчик могут по облакам точек получить размеры, не попавшие на построенные в итоге объекта.

Промежуточным результатом обработки данных лазерного сканирования являются ортофотопланы, представляющие собой растровое изображение объекта с сохраненными пропорциями, размерами и координатами всех его элементов. Ортофотопланы позволяют осуществлять непосредственное построение плоских чертежей в программных комплексах типа AutoCAD. Однако, сама подготовка ортофотопланов по облакам точек выполненных измерений занимает очень значительное время и применяется только в случаях, когда исполнители обмерных чертежей не могут использовать программное обеспечение, позволяющее строить необходимые чертежи без трансформации имеющихся цифровых данных в ортофотопланы.

В случае, если компания обладает необходимым специализированным программным обеспечением и практическим опытом построения трехмерных моделей и чертежей с использованием данных лазерного сканирования, следующим практическим этапом выполнения работ является построение комплекта обмерных чертежей по сшитому облаку точек всего объекта. Геодезические предприятия, владеющие технологией 3D лазерного сканирования и многолетним опытом обмерных работ, как правило, быстро и эффективно выполняют работы по построению стандартного набора чертежей:
- чертежи фасадов;
- планы кровли;
- поэтажные планы;
- разрезы;
- сечения.

Итоговое качество подготовки обмерных чертежей в равной степени определяется как квалификацией специалистов, осуществляющих их подготовку, так и качеством полученных данных выполненного лазерного сканирования, то есть оптимальным размещением лазерных сканеров в процессе съемки, плотностью точек при каждом сканировании, геодезическим обоснованием на объекте, качеством фотофиксации на объекте.

В том же случае, если Заказчику требуются специализированные чертежи сложных элементов декора или их шаблоны, и Заказчик обладает опытом построения такого типа чертежей, то выполнение специализированных чертежей самим Заказчиком является оптимальным подходом к данной части работ. В этом случае оправданы даже дополнительные временные затраты на подготовку ортофотопланов, которые в значительной степени упрощают специалистам Заказчика построение чертежей или шаблонов. Построение цифровой 3D модели объекта является естественной возможностью, предоставляемой технологией лазерного сканирования . Однако в связи с тем, что цифровая 3D модель, выполняемая по полученным результатам исполнительной съемки, обычно не включается ни в один из пакетов документов, необходимых архитекторам и строителям, эта уникальная возможность зачастую остается невостребованной.

Эта статья является собственностью компании «НГКИ». При использовании любых материалов с этого ресурса ссылка на сайт www.!

Ограничения в применении технологии 3D лазерного сканирования при выполнении архитектурных обмеров

Ограничения применения технологии 3D лазерного сканирования несоизмеримо меньше ограничений, возникающих при использовании традиционных технологий архитектурных обмеров, но, тем не менее, они тоже существуют.

Первое из таких ограничений - это «тени», то есть места, недоступные для лазерной съемки. Выполнение лазерной съемки фасадов с поверхности земли в условиях близкого расположения зданий естественно создает «тени» на сканах верхних этажей зданий. Использование в съемке с применением технологии 3D лазерного сканирования какого-либо подъемного механизма в целях исключения пресловутых «теней» на сканах неизбежно удорожает всю съемку, а также увеличит временные затраты и снизит точность съемки за счет нестабильности основания. Поэтому полевая бригада должна обладать существенным опытом выполнения съемочных работ с применением 3D лазерных сканеров, чтобы, с одной стороны, минимизировать размеры «теней» и оставить их только в тех местах, которые не будут критичными для построения планов фасадов и чертежей деталей, расположенных на фасадах, а, с другой стороны, существенно не увеличить трудозатраты на съемку в условиях ограниченных бюджетов, выделяемых Заказчиками на выполнение съемки объекта.

Второе ограничение связано с беспрецедентным объемом обрабатываемой измерительной информации. Например, выполнение съемки среднего по размерам объекта «Музей современной истории России», расположенного по адресу Москва, улица Тверская, д. 21, даже при минимальной детализации интерьеров, потребовала 725 сканов. Количество сканов, необходимых для съемки объекта, определяется не только и не столько размерами этого объекта, сколько его сложностью, то есть количеством помещений и сложностью их формы.

Эта статья является собственностью компании «НГКИ». При использовании любых материалов с этого ресурса ссылка на сайт www.!

Обмеры Музея современной истории России с помощью лазерного сканирования и обработка данных

Общий объем сырых измерений (до обработки данных) при выполнении съемки Государственного центрального музея современной истории России (ГЦМСИР) составил более 47 гигабайт. Обработка столь внушительного объема данных требует использования самых современных компьютеров с максимальным объемом оперативной памяти и дискового пространства, причем все используемые жесткие диски должны обладать максимально возможной скоростью записи и передачи данных.

При том, что съемка данного объекта заняла 15 рабочих дней бригадой из двух человек, чистка и сшивка полученных в результате проведенного лазерного сканирования облаков точек заняла 31 день работы одного нашего специалиста при полном отсутствии какой-либо возможности параллельного ведения процесса сшивки сканов сразу на нескольких рабочих местах. Такое соотношение затрат времени на съемку и первичную обработку данных неприемлемо. По этой причине к настоящему моменту в компании «НГКИ» разработана технология параллельной съемки сложных объектов несколькими лазерными сканерами без потери точности съемки всего объекта и возможностью параллельной сшивки различных частей объекта с использованием нескольких лицензий программного обеспечения для сшивки сканов. Эта разработанная технология первичной обработки полученных данных позволяет сократить затраты времени на съемку и первичную обработку данных на 40% при использовании двух сканеров равной производительности и двух лицензий программного обеспечения для сшивки и чистки данных и на 70% при использовании трех лазерных сканеров и трех лицензий программного обеспечения для первичной обработки данных.

Обязательной составляющей выполнения любых обмерных работ на объектах исторического и культурного наследия является фотофиксация состояния измеряемого объекта. Высокопроизводительные фотокамеры, устанавливаемые на современных 3D лазерных сканерах, позволяют и получить высокое качество снимков объекта обмеров, и придать в автоматическом или полуавтоматическом режимах точкам измерений естественный цвет точек самого объекта. Это существенным образом упрощает выполнение работ по идентификации и подготовке обмерных чертежей и шаблонов сложных элементов декора в дальнейшем, но в то же время и увеличивает время съемки 3D сканером на каждой точке его установки и не заменяет полностью фотофиксации объекта с использованием фотосъемки «с рук». Минимизация временных потерь в данном случае зависит исключительно от квалификации инженерной бригады, осуществляющей как саму лазерную съемку, так и фотофиксацию.

Эта статья является собственностью компании «НГКИ». При использовании любых материалов с этого ресурса ссылка на сайт www.!