Для эффективного воздействия на бактериальный состав среды необходимо иметь достоверную информацию о его качественном и количественном содержании. Существует много методов определения бактерий, и выбор способа изучения образца зависит от того, какие результаты должны быть получены. Метод определения молочнокислых бактерий отличается от методики выявления Listeria monocytogenes, а определение ферментативной активности производится иначе, чем определение биохимических свойств.

Методы определения по получаемому результату можно разделить на две большие группы:

  • определение количества микробов;
  • качественное исследование.

Результаты анализа бактериального состава образцов выражают общим микробным числом, выраженным в КОЕ (колониеобразующие единицы).

Анализ количества микробов, в зависимости от его возможностей, может определять:

  • число всех микроорганизмов, содержащихся в образце;
  • только жизнеспособные микробы.

В зависимости от способа получения результата, методы определения количества микроорганизмов подразделяют на:

  • прямые (микроскопические);
  • косвенные.

В свою очередь, косвенные методы разделяют в зависимости от применяемого критерия как:

  • методы оптического исследования (спектрофотометрия, нефелометрия) – измеряемый параметр зависит от количества микроорганизмов;
  • высев – метод измерения образовавшихся колоний.

Методы определения общего количества бактерий опираются на значение титра образца.

Методика титра

Метод предельного разбавления образца (метод титра) позволяет с высокой точностью определить количественное значение группы микроорганизмов.

Сущность методики заключается в том, что исследуемая проба разводится определенным образом и высевается в специфические для микроорганизмов среды. Так создаются благоприятные условия для роста. По прошествии времени исследуют образцы, устанавливая, при каком предельном разведении выявляются бактерии определенной группы. Выводы делаются по специфическим изменениям питательного субстрата.

Подобная методика, учитывающая индивидуальные свойства микробов, хорошо зарекомендовала себя при обнаружении микроорганизмов кишечной палочки и родственных ей видов.

Прямой подсчет

Метод удобен для исследования проб почвы и воды. Осуществляется прямой подсчет в предназначенных для этого счетных камерах, на мембранных фильтрах или фиксированных мазках. Метод не требует сложного оборудования, непродолжителен по времени и минимален по стоимости.

Ограничением использования метода является обязательная высокая концентрация микробов в образцах.

Метод оптического определения количества бактерий, основанный на определении светорассеивания взвесью образца. Данный способ позволяет определить число клеток в образце, что делает метод востребованным при микробиологических исследованиях.

Метод нефелометрии

Подсчет жизнеспособных микробов

Методика базируется на посеве определенного количества бактерий в виде суспензии на среду агара. После этого осуществляют подсчет сформированных колоний, имея в виду, что каждая из них является потомством жизнеспособной бактерии.

Существует две разновидности способа посева образца:

  • исследуемый образец вносится в среду агара и перемешивается;
  • образец высевается на поверхностном слое агара.

Подвижность как важный фактор идентификации бактерий

Значимым фактором идентификации бактерий является подвижность, которая обеспечивается жгутиками. Так как количество и расположение жгутиков, обеспечивающих подвижность, может быть различным, все имеющие жгутики микробы подразделяют для удобства идентификации на:

  • монотрихи – один жгутик на полюсе;
  • лофотрихи – пучок жгутиков, расположенный на одном из полюсов;
  • амфитрихи – жгутики или пучки расположены на обоих полюсах;
  • перитихи – жгутики расположены по периметру клетки.

Определение подвижности бактерий проводят в культурах не старше суток. У старых культур способность передвигаться утрачивается.

Определение качественного бактериального состава

Определение качественного состава бактерий опирается на несколько факторов.

Биолого-химические особенности микроорганизмов

Изучение биохимических свойств микроорганизмов помогает определению качественного состава бактерий.

Идентификации микроорганизмов способствует знание биохимических процессов. Методы определения количества и качества бактерий опираются на протеолитические и сахаролитические свойства микроорганизмов, а также токсино- и пигментообразование.

Ферменты микробов

Одним из факторов жизнедеятельности бактерий является ферментативная активность: ферментный состав и свойства регламентируются геномом микроорганизма и является стабильным критерием идентификации микробов. Поэтому обнаружение протеолитических, сахаролитических и других ферментов имеет большое значение в идентификации микроорганизмов.

К примеру, критерием протеолитической активности микроорганизмов является способность бактерий расщеплять белок до продуктов глубокого распада (сероводород и индол). На этом результате ферментативной активности основан метод определения числа микроорганизмов, имеющий важное практическое значение.

Свойство пигментообразования

Другим стойким генетическим признаком бактерий является пигментообразование. Данное свойство предназначено для защиты бактериальной клетки от воздействия ультрафиолетовых лучей.

Большая часть патогенных микроорганизмов не обладает подобными защитными свойствами – пигментообразование для них не характерно.

Изучение микрофлоры молока

Определение бактерий имеет значение в практической деятельности человека, например, в пищевой промышленности. Так, бактериальная обсемененность молока является основным показателем санитарных условий его получения. В случае превышения порогового количества микроорганизмов в молоке, сортность продукта снижается.

С 1987 г. страны ЕЭС приняли единые стандарты по степени бактериальной обсемененности молока, подразделяя продукт на три категории:

  • А – 20 тыс./мл;
  • В – 100 тыс./мл;
  • С – свыше 100 тыс./мл.

В данном случае числа указывают на максимально возможное количество микроорганизмов в 1 мл молока (обсемененность).

Бактериальная обсемененность молока напрямую зависит от санитарных условий получения и первоначальной обработки продукта. Так, использование для очистки молока многоразовых фильтров может приводить к дополнительному бактериальному обсеменению.

Наличие в молоке соматических клеток является важным критерием качества. Эти клетки являются частичками биомассы животного. Они образуются в вымени и отражают естественные процессы старения и обновления организма.

Число соматических клеток в молоке возрастает при наличии у животных травм, заболеваний ЖКТ или других патологий, что приводит к росту показателя бактериальной обсемененности молока.

Определение молочнокислых бактерий

Большое значение в пищевой промышленности уделяется молочнокислым микроорганизмам благодаря их антагонистической и протеолитеческой активности.

К примеру, пластичная консистенция и выраженный вкус различных сортов сыра связаны с протеолитической активностью молочнокислых микробов закваски. Исследованиям активностью молочнокислых бактерий в этой области уделяется большое значение, но, до сих пор не удалось создать критерий определения штаммов молочнокислых бактерий закваски по показателю протеолитеческой активности.

Антагонистическая активность молочнокислых микробов используется не только в пищевой промышленности, но и в медицине, ветеринарии сельском хозяйстве и т.д.

Примеры применения молочнокислых бактерий как антагонистов к определенным микроорганизмам:

  • производство сыров – антагонисты к масляным микробам и кишечной палочке;
  • хлебопекарное производство – антагонисты к споровой палочке, возбудителю «картофельной болезни» хлеба;
  • молочнокислые продукты – антагонисты к бактериям, провоцирующим развитие желудочно-кишечных инфекций.

При необходимости подсчета в закваске количества молочнокислых бактерий используют метод посева микробов на агаре и молоке с добавлением мела. Образующаяся молочная кислота растворяет мел, и вокруг колоний молочнокислых бактерий появляются светлые зоны.

Для подсчета молочнокислых стрептококков используют метод предельного разведения, высевая их в молоко. В зависимости от термофильности молочнокислых бактерий выбирается оптимальный термальный режим посева. Образцы со свернувшимся молоком используют для приготовления микроскопических препаратов. После этого выявляют минимальное разведение, содержащее молочнокислые палочки.

Воздушный микробиологический контроль

Для жизнедеятельности бактерий воздушная среда не является благоприятной, но большинство микроорганизмов, попадая в воздух, способны временно сохранять активность и свои свойства. Среди них такие патогенные бактерии, как возбудители кори, скарлатины, коклюша, оспы, туберкулеза, легочной чумы и другие инфекции дыхательных путей, передающиеся воздушно-капельным методом.

Микробиологический контроль воздушной среды оценивает общую бактериальную обсемененность воздуха и разрабатывает профилактические методы снижения числа возбудителей инфекционных заболеваний.

Объектами исследования степени бактериальной обсемененности в закрытых помещениях являются больницы и поликлиники, детские учреждения и места постоянного скопления людей (кинотеатры, спортзалы и другие). Определение степени бактериальной обсемененности воздуха в помещениях проводится по отработанным методикам, включающим следующие действия:

  • забор образца;
  • транспортировка и подготовка пробы;
  • бактериальный посев;
  • определение микроорганизмов посредством идентификации.

В случае выявления высокой степени бактериальной обсемененности, для понижения количества бактерий используют различные методы:

  • химические – обработка помещения двуокисью азота, озоном или суспензией молочной кислоты;
  • механические – принудительная фильтрация воздуха;
  • физические – облучение ультрафиолетом.

Исследование бактериального состава воды

Анализ воды проводят на наличие следующих групп микроорганизмов:

  • колиформные микробы – микроорганизмы группы кишечной палочки, используются как маркеры фекальной контаминации (обсеменения);
  • клостридии – микробы, обладающие высокой устойчивостью к обеззараживаннию; реперный показатель (ориентир) – если в пробе нет клостридий, то нет и других патогенных микробов;
  • вирусы;
  • лямблии.

Колиформные бактерии являются грамотрицательными бактериями группы кишечной палочки, обитающими в кишечнике млекопитающих и птиц. В воду они попадают с фекалиями, способны существовать в ней неделями, но теряют свойство размножения.

Наличие колиформных микроорганизмов в образце воды указывает на высокую вероятность присутствия сточных вод. Наличие вирулентных (болезнетворных) штаммов колиформных бактерий – показатель риска возникновения заболеваний.

Колиформные микробы включают в себя группу термотолерантных колиформных микроорганизмов, обладающих свойством выживать при высоких (45°С) температурах. Термотолерантные колиформные бактерии являются индикатором недавнего фекального заражения, аналитически легко определяются.

Согласно СанПиН, колиформные бактерии не могут присутствовать в системах водоснабжения, а наличие колиформных микроорганизмов указывает либо на некачественную очистку, либо на вторичное фекальное загрязнение. Нормой считается наличие колиформных микробов в количестве не более 5% от общего числа. Критерием эффективности очистки от фекальных стоков являются термотолерантные колиформные бактерии, как легко определяемые.

Выявление возбудителя листериоза

Бактерия Listeria monocytogenes является возбудителем листериоза – инфекционного заболевания людей и животных.

Listeria monocytogenes

Возбудитель листериоза – имеющая высокую подвижность неспорообразующая грамположительная кишечная палочка Listeria monocytogenes. У людей заражение Listeria monocytogenes протекает как острый сепсис, поражая центральную нервную систему, лимфосистему, миндалины, селезенку и печень. Поражение Listeria monocytogenes у человека может протекать как в острой, так и в хронической форме.

Статистическая группа риска по Listeria monocytogenes:

  • люди преклонного возраста;
  • беременные;
  • лица с ослабленным иммунитетом, ВИЧ-инфицированные и онкобольные;
  • алкоголики и наркоманы.

Определяется зараженность Listeria monocytogenes методом ПЦР (полимеразная цепная реакция) – в плазме крови выявляется ДНК Listeria monocytogenes. Подтверждением наличия листериоза является выявление специфичного участка ДНК Listeria monocytogenes. Специфичность определения ДНК Listeria monocytogenes – 100%; метод является высокочувствительным.

Взаимодействие бактерий с антибиотиками

Выявление чувствительности бактерий к антибиотикам имеет большое практическое значение для расчета дозировки препаратов при профилактике и лечении инфекционных заболеваний.

Для выявления чувствительности микробов к различным антибиотикам применяются два основных метода:

  • определение чувствительности к антибиотиками при помощи дисков;
  • изучение чувствительности микроорганизмов к антибиотикам посредством серийного разведения.

Методика с использованием дисков

Для выявления степени чувствительности к антибиотикам, в питательную культуру засевают изучаемые бактерии. На поверхности размещают диски, содержащие различные антибиотики в известных дозировках.

Пробу выдерживают при оптимальной температуре (37°С) сутки, после чего, сравнивая диаметр кольцевых безмикробных зон вокруг различных дисков, делают вывод о чувствительности бактерий к различным антибиотикам и их концентрациям.

Для получения воспроизводимых результатов следует пользоваться стандартными дисками и питательной средой, а в качестве контроля применять эталонные штаммы. Методика дисков не позволяет получить надежные результаты, а так же очень критична к слабодифундирующим антибиотикам (ристомицин или полимиксин).

Серийное разведение

Чувствительность микробов к антибиотикам методом серийного разведения позволяет выявить минимальную концентрацию лекарственного препарата, оказывающую терапевтический эффект. Чувствительность микроорганизмов определяют, как:

  • чувствительные штаммы – жизнедеятельность бактерий подавляется обычной дозировкой антибиотиков в крови;
  • умеренно устойчивые штаммы – для ингибирования бактерий необходимо использование максимальных доз антибиотиков;
  • устойчивые бактерии – жизнедеятельность бактерий не подавляется даже при максимальной концентрации антибиотика, то есть отсутствие чувствительности.

Определение чувствительности бактериофагов

Бактериофаги являются естественными врагами бактерий. Характер взаимодействия бактериофага с бактериями описывается как:

  • вирулентное, вызывающее лизис (гибель) микробной клетки;
  • умеренное – переход бактерии в неинфекционную форму фага (профаг).

Бактериофаги специфичны к определенным группам микроорганизмов, что отражается в их названии – стрептококковые фаги, стафилококковые фаги и т.д. Способом определения количества бактериофагов в единице объема является метод агаровых слоев. Он прост в исполнении и обладает достаточной точностью.

Таким образом, существует большое количество методов определения микроорганизмов. Выбор оптимального зависит от заданного критерия отбора.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Для обывателя, не посвященного в таинства микробиологических исследований, весь процесс изучения микробов представляется сложным, специфическим и требовательным к качеству и количеству специального оборудования. Такое представление соответствует действительности только отчасти, поскольку вся сложность и специфичность построена на определенной микробиологической азбуке. Эта азбука состоит из описания методов изучения бактерий и других микроорганизмов, а также из порядка построения выводов по результатам проведенных исследований.

К общим положениям при изучении методов исследования микробов можно отнести порядок выбора того инструмента, которым будут производиться лабораторные анализы бактериальной клетки, и последовательность интерпретации тех выводов, на основании которых будут фиксироваться окончательные заключения по изучаемому микроорганизму.

Выбор метода изучения в первую очередь зависит от предмета исследований:

  1. Если планируется изучить строение и морфологию клетки, ее ультраструктуру (составные структуры и компоненты) и установить наличие подвижности, используется два вида микроскопии: микроскопия бактериальных клеток в живом состоянии и в окрашенном виде.
  2. Изучение метаболизма и ферментативной активности микроорганизмов производится путем посева выращенных колоний на дифференциально-диагностические питательные среды.
  3. Определение чувствительности к антибиотикам производится методом диффузии в агар.
  4. Изучение генетики микроорганизмов (их наследственности и изменчивости) осуществляется путем проведения перераспределительного теста, методом реплик и ряда других специализированных исследований.

Каждый из указанных методов имеет свои вариации исполнения, которые зависят от особенностей условия проведения анализа и от изучаемого материала.

Кроме того, есть масса узкоспециальных микробиологических экспериментов, которые позволяют определить те или иные особенности структуры или свойств бактериальной клетки.

Изучение морфологии и подвижности

Морфологическое исследование в основном направлено на идентификацию бактерий.

Изучение форм и выявление подвижности проводится методом микроскопирования живых бактерий.

Основные структуры микроорганизма анализируются в препаратах раздавленной или висячей капли. Это способ нанесения бульонного раствора с бактериальной культурой на предметное стекло.

Этот метод определения строения бактерии может проводиться путем наблюдений в «темном поле зрения».

Принцип эксперимента заключается в том, что исследователем создаются такие условия, когда микробные тела не освещаются напрямую, а отражают лучи света, что позволяет рассмотреть их основные структуры более подробно и в нативной (естественной) среде.

Анализ с использованием различных способов окрашивания предполагает, что окрашиваться будут убитые микробные клетки, поскольку они лучше окрашиваются.

Для проведения анализа необходимо осуществить несколько манипуляций:

  1. Приготовить мазок исследуемого материала. В эту стадию входит работа с исследуемым материалом (кровь, мокрота и т.д.).
  2. Высушивание и фиксация мазка химическим или физическим способом.
  3. Выбор вида окрашивания (сложный или простой).

Простым способом бактериальные клетки окрашивают в большинстве случаев только для того, чтобы выявить в исследуемом материале присутствие микроорганизмов. Этот способ представляет собой окрашивание мазка метиленовым синим. Данный краситель окрашивает фон мазка на порядок слабее, чем клетки самих микроорганизмов.

Обнаружение основных структур бактериальной клетки осуществляется с использованием сложного окрашивания:

  • метод Грама (определение свойств клеточной стенки);
  • окраска на выявление спор;
  • окраска по Романовскому-Гимзе окрашивает в разные цвета основные структуры клетки;
  • выявление капсул по способу Гинса;
  • выявление зерен волютина (внутриплазматические гранулы, состоящие из неорганических полифосфатов), их присутствие указывает на наличие возбудителя дифтерии.

Исследование ферментативной активности и метаболизма

Исследование ферментативной активности и метаболизма бактериальных клеток начинается с подбора питательных сред, на которых изучаемые микроорганизмы смогут проявить нужные исследователю свойства.

Для приготовления питательных сред используются:

  • продукты животного происхождения;
  • продукты растительного происхождения;
  • органические и неорганические соединения определенного химического состава.

По своему составу питательная среда должна быть:

  • с подходящим для конкретного вида микроорганизмов уровнем рН (кислотностью);
  • с достаточным уровнем влажности, поскольку для бактерий важно состояние осмотического давления внешней среды;
  • изотоничной и стерильной.

После создания питательной среды осуществляется посев на нее биологического материала и выделение чистой культуры.

После выделения и идентификации чистой культуры изучаются ее биохимические свойства и ферментативная активность.

Для определения ферментативной активности бактериальной клетки выделенную культуру засевают на дифференциально-диагностические питательные среды, которые заранее созданы под выявление того или иного фермента.

  1. Для обнаружения сахаролитической биохимической активности клетки исследуемой культуры засевают в пять пробирок, в которые закладывают разные органические сахара. В зависимости от того, в какой из пробирок будет выявлена биохимическая активность (сработает цветовой индикатор), определяется, какими сахаролитическими свойствами обладает исследуемая бактериальная клетка.
  2. Для определения протеолитической активности чистую бактериальную культуру засевают на мясопептонный желатин. Там, где под действием протеолитического фермента происходит расщепление белков желатина (разжижение), там и фиксируется присутствие протеолитического фермента. Для определения глубины работы протеолитических ферментов при данных анализах проводят исследование на выявление индола и сероводорода (конечных продуктов протеолитического распада).
  3. Установление редуцирующей способности бактерий производится с засеванием лакмусового молока. Присутствие редуктазы проявляется специфическим обесцвечиванием молока.
  4. Выявление каталазы происходит путем фиксации на плотной питательной среде в чашке Петри появления пузырьков газа, который выделяется в результате расщепления перекиси водорода под действием каталазы.

Данные исследования позволяют определить основные свойства тех или иных микробов. Так, присутствие протеолитического или сахаролитического фермента – свидетельство наличия патогенных для человека, животных и растений свойств изучаемого микроорганизма.

Исследование чувствительности к антибиотикам

Исследование чувствительности микроорганизмов к антибиотикам осуществляется по принципу деления бактерий на чувствительных и устойчивых к воздействию антибиотиков.

Изучение этого свойства особенно важно для практической медицины, где постоянно необходимо исследовать инфицированный материал и подбирать антибиотики для лечения.

Ввиду того что микробы умеют быстро приспосабливаться к тому разрушающему воздействию, которое на них оказывают антибиотики, очень важно на начальных стадиях лечения определить, как будет воздействовать запланированный к лечению антибиотик и присутствует ли у исследуемого биологического материала чувствительность к планируемому способу антибактериального воздействия.

  1. Для начала при помощи исследований патогенного материала определяют, какой микроб ведущий в очаге заражения (определение ведется, в том числе, и методом количественного подсчета).
  2. Если установлен ведущий микроорганизм, то его чувствительность определяется путем диффузии в агар с применением бумажных дисков. Специально разработанные и выпускаемые бумажные диски заранее обработаны антибиотиками в нужной концентрации. Чувствительность к определенному антибиотику на бумажном диске определяется по замедленному росту колонии на соответствующих зонах диска и по разному окрашиванию дисков.

Кроме метода с использованием бумажных дисков, также для определения чувствительности бактерий к антибиотикам применяется способ стерильных разведений. Бульонные культуры микробов вносят в разведенные растворы антибиотиков. В процессе изучения микробов на чувствительность к антибиотикам пробирки инкубируют и выдерживают определенное количество времени.

Результаты исследования изучают по таблице чувствительности, где указаны исходные и конечные данные концентрации антибиотиков и биологического материала.

Исследование генетики бактерий

Генетика позволяет определить свойства наследственности и изменчивости конкретного микроорганизма. Изучение этих свойств очень важно, поскольку дает возможность понять механизм тех мутаций в генном коде, которые позволяют бактериям с такой невероятной скоростью и легкостью приспосабливаться к изменяющимся внешним условиям.

Еще одной важной особенностью генетики бактерий является то, что ее принципы справедливы для всего органического мира. Изучив генетику бактерий, можно на молекулярном уровне установить все основные эволюционные законы.

Основной предмет изучения генетики бактерий – мутации (скачкообразное изменение наследственного признака).

Исследование мутаций происходит с использованием бактериофагов (вирусы бактерий, которые разрушают бактериальную клетку).

Вырабатываемая бактериями в результате мутаций устойчивость к фагам фиксируется разными методами:

  • флуктуационный тест;
  • перераспределительный тест;
  • метод реплик и т.д.

Изменение в генетике исследуемой бактерии фиксируется только тогда, когда приобретенной одной колонией свойство передается по наследству следующим поколениям.

Мутантов среди бактерий выявляют следующими методами:

  • прямой отбор (посев на специально подобранную селективную среду);
  • непрямое выявление, так называемый метод перепечатывания колоний с одной чашки Петри на другую до обнаружения прогнозированных мутантов;
  • пенициллиновый метод позволяет достаточно быстро выявить мутантов, поскольку вводимый исследователем пенициллин угнетает рост немутировавших клеток.

Исследование генетики бактерий производится с использованием новейшего оборудования, которое позволяет не только выявить изменения наследственности, но и на молекулярном уровне определить их природу.

Сегодня такие исследования генетики бактерий находятся в активной фазе. Микробиологи регулярно делятся зафиксированными новинками. О завершении исследований в этой области говорить пока еще очень рано.

Бактерии - крохотные существа, и многие считают, что они очень просто устроены. Конечно, каждая бактерия - это всего лишь одна клетка, у которой нет отдельных частей тела, вроде ног или рук, нет глаз и носа, нет даже клеточного ядра. Но каким-то образом бактерии выживают и умудряются процветать с такими, казалось бы, ограниченными размерами и возможностями, да к тому же находить целое множество оригинальных решений для облегчения собственной жизни. Например, чтобы двигаться - то есть влиять на свое положение в пространстве самостоятельно, а не дожидаясь попутного течения, - бактерии придумывают самые удивительные ухищрения. Конечно, вы уже наверняка слышали о жгутиках бактерий. А что такое твитчинг? И как можно сдвинуть себя с места с помощью сахаров? Давайте присмотримся к бактериям чуть ближе. И сразу обратим внимание на то, из чего бактерии собирают себе средство передвижения.

Белковая диета

Среди подвижных бактерий больше всего тех, кто для движения использует белковые молекулы. Как они их применяют? Многие бактерии синтезируют специальные белки, из которых собирают подвижную ниточку - жгутик (рис. 1). Жгутик состоит из трех частей - филамента (собственно нити), крюка и базального тела. Каждая из этих частей сложена из белков. У хорошо изученной бактерии - кишечной палочки - белки, образующие филамент, называют флагеллинами и обозначают буквами Flg, Fli, Flh (от латинского слова flagellum - жгутик). Флагеллины складываются в нить, которая с помощью крюка крепится к базальному телу. Базальное тело - это что-то вроде якоря, который прочно закреплен в клеточной оболочке и может свободно вращаться по часовой стрелке или против. У бактерий может быть один или несколько жгутиков.

Какие виды движения обеспечивает жгутик? Если бактерия находится в жидкой среде, то жгутик помогает ей плыть . Плавание - это самый быстрый способ передвижения. Причем, бактерия может неплохо управлять своим движением, меняя направление вращения базального тела: вращение базального тела по часовой стрелке толкает клетку в направлении от жгутика, а биения против часовой стрелки тянут клетку вслед за жгутиком.

А теперь представьте размахивание жгутиками на твердой поверхности, смоченной жидкостью. Бактерии будут не плыть, а расползаться в одной плоскости. Такое движение называется роением . Роение чаще бывает у бактерий, живущих в крупных колониях, - подвижные бактерии, находящиеся с краю, пытаются отодвинуться как можно дальше и основать свои собственные колонии.

Бактерии могут также создавать более короткие и просто устроенные нити, чем жгутики, - пили. Клетка может с помощью пили прикрепиться к чему-нибудь твердому, а потом подтянуться к месту крепления, разбирая эту нить, начиная от места крепления пили к клетке (рис. 2). Можно сказать, что клетка перемещается рывками. Подобный способ движения у одной клетки называется твитчинг (англ. twitch - дергать, тащить). А если так действует несколько скрепленных друг с другом бактерий, то они дружно скользят по твердой поверхности.

В оболочках клетки могут быть разнообразные белковые комплексы, например, обхватывающие клетку кольца из белков. Эти кольца крутятся, как гусеницы у гусеничного трактора, и помогают бактерии скользить по твердой поверхности. Такой способ подвижности есть у бактерии Flavobacterium johnsoniae .

У других бактерий есть белки, расположенные вдоль всей поверхности клетки. Эти белки создают продольные волны, и бактерия извивается и плывет в водной толще или скользит на твердом субстрате.

Очень многие микроорганизмы способны двигаться, но вот конкретный механизм или набор из нескольких механизмов у каждой специфичен. Поэтому, например, и говорят, что такое строение жгутика характерно для кишечной палочки, а у другой бактерии, тоже плывущей с помощью жгутика, все может быть устроено иначе - и ученые исследуют каждую бактерию по отдельности.

Как вы, наверное, заметили, пока что описанные способы движения позволяли бактерии плыть или скользить в зависимости от того, где она находится, - в жидкости или на твердой поверхности. Но скольжение может быть и единственным доступным способом передвижения.

Сахарный след

Многие бактерии выделяют наружу сахара. Смешиваясь с водой, сахара образуют слизь. Слизь облегчает движение клеток по твердой поверхности при использовании жгутиков.

Однако и сама слизь может быть источником движения. Представьте себе, что вы надуваете воздушный шарик. Внезапно шар вырывается из ваших рук и улетает под силой струи воздуха, резко выходящей из шарика. Подобным образом могут толкать себя и бактерии.

Бактерии вида Oscillatoria princeps (рис. 3, слева ) живут, объединяясь в длинные нити. Хотя каждая клетка представляет собой самостоятельный организм, они соединены вместе внешней прозрачной капсулой, которая тоже производится из сахаров. На клетках возле места их соединения друг с другом есть контактные поры, расположенные под углом к поверхности нити (рис. 3, справа ). Часть из них повернута к одному концу нити, другая половина к другому. Слизь подается в одном направлении и поступает в канал, образованный из белков на поверхности клеток. Канал оборачивается вокруг клеток по спирали, текущая по нему слизь запускает вращение клеток, и вся нить скользит по твердой поверхности, подобно штопору - такой способ движения называется «подвижность с помощью реактивной струи» .

Выделение сахаров из специальных пор или биение жгутиков - это активные способы передвижения клетки. Бактерия взаимодействует с окружающей средой и активно отталкивается от воды или твердой поверхности. Но существует и пассивная подвижность, когда изменения внутри клетки приводят к ее перемещению благодаря внешним силам, например, току воды.

Газовые баллоны

Бактерии могут изменять свою плавучесть, накапливая внутри атмосферный воздух. Воздух все время диффундирует в толщу воды, а бактерии могут специально отбирать и накапливать молекулы разных газов в специальном баллоне, сложенном из белка. Таким образом клетка меняет свою плотность, начинает весить меньше и всплывает, выталкиваемая архимедовой силой. Если бактерии затем нужно погрузиться обратно, она может избавиться от воздуха или накопить внутри себя тяжелые сахара.

В какую сторону плыть?

Чтобы оказаться в самых подходящих для себя условиях, многие бактерии передвигаются не случайным образом, а целенаправленно, приближаясь к какому-нибудь приятному для себя объекту (например, еде или свету) или отплывая как можно дальше от неприятного (например, молекул, выделяемых другими бактериями). Такое целенаправленное движение называется таксисом . Чтобы распознавать сигналы из внешнего мира, бактерия синтезирует специальные белки - рецепторы, которые располагаются у нее на поверхности. Каждый вид рецепторов реагирует на свой стимул - молекулы еды, свет и так далее. Обнаружив свой стимул, рецептор передает сигнал о нем внутрь клетки.

Но сигнал, передаваемый рецептором, говорит только о том, что желанный объект есть где-то рядом, но не сообщает, с какой именно стороны от бактерии он находится. И чтобы найти еду, бактерии приходится хитрить. Почуяв пищу, бактерия плывет несколько миллисекунд с помощью жгутика в случайном направлении. Если во время движения сигнал ослабевает, бактерия резко останавливается, вновь делает поворот и пробует плыть в другую сторону. Если в этот раз сигнал от пищи усиливается, то бактерия проплывает в эту сторону большее расстояние. Таким образом, почти что играя в «горячо-холодно», бактерия достигает цели (рис. 4).

Если у клетки нет жгутика, то двигаться целенаправленно ей куда труднее. Но и тут можно что-то придумать. Например, газовые баллоны внутри клетки смещают бактерию вверх и вниз, то приближая ее к поверхности водоема, кислороду и свету, то погружая на дно.

Микроигра

Попробуйте расшифровать четыре слова, связанных с микробиологией, прослеживая движение бактерий к еде.

Каждая бактерия начинает двигаться от буквы, на которую указывает исходящая от бактерии стрелка. Затем бактерия меняет направление движения, согласно маленькой черной стрелочке у буквы. Если бактерия приближается к еде (красная точка), то она проплывает три клеточки (по горизонтали, вертикали или диагонали напрямую), снова поворачивает согласно направлению стрелки на этой клеточке и так далее. Если бактерия плывет в противоположную от еды сторону, она сдвигается только на одну клеточку. Если движение скорее нейтрально, то бактерия проплывает две клеточки.

Все ли из найденных слов вам знакомы?

Литература

  1. Пиневич А.В. Микробиология. Биология прокариотов: учебник. Том 1. СПб.: Изд-во С.-Петерб. университета, 2007. - стр. 225, 320–330;
  2. Нетрусов А.И. и Котова И.Б. Микробиология: учебник для студ. высш. учеб. заведений (3 изд.). М.: Издательский центр «Академия», 2009. - стр. 63–64;
  3. Mark J. McBride. (2001). Bacterial Gliding Motility: Multiple Mechanisms for Cell Movement over Surfaces . Annu. Rev. Microbiol. . 55 , 49-75;
  4. Загадка мужественного запаха ;
  5. McLeod A. (2009). Bacteria for beginners . OoCities.org .

Цель занятия . Усвоить методы окраски спорообразующих, капсулообразующих бактерий, а также определение подвижности бактерий.

Материалы и оборудование . Взвеси бактерий с вакцинным штаммом сибирской язвы, клостридиями, готовые препараты с капсулообразующими бактериями, подвижные бульонные культуры эшерихий 18 часового роста, предметные и покровные стекла, плакаты, 2% раствор сафранина, водный раствор малахитовой зелени, карболовый фуксин Циля.

Методические указания . Каждый студент готовит мазки из взвесей микроорганизмов и окрашивает их по методу Трухильо, Ольта, микроскопирует и зарисовывает; готовит препарат для изучения подвижности микроорганизмов методом «раздавленная» и «висячая» капля.

Окраска спор . При неблагоприятных условиях для микробов (отсутствие питательной среды, высушивание, неблагоприятная температура и др.) в цитоплазме некоторых микроорганизмов образуются споры. Формируются они внутри вегетативной клетки, являясь эндоспорами. Палочковидные грамположительные микроорганизмы, образующие округлые споры, диаметр которых не превышает ширину микробной клетки, относятся к роду Bacillus и называются бациллами. Микроорганизмы рода Clostridium имеют споры диаметр которых превышает ширину микробной клетки и называются клостридиями. По форме они бывают овальные и круглые (рис. 5).

Споры устойчивы к воздействию высоких температур, химических веществ, к высыханию, длительно сохраняются в почве, что объясняется их особым строением и химическим составом, в особенности ее оболочки. Поэтому споры стойки к действию красителей.

Все методы окраски спор основаны на обеспечении проникновения красителя через трудноокрашиваемую оболочку споры. Поэтому применяют протраву. После охлаждения оболочка вновь становится плотной и не пропускает дополнительный краситель.



Техника окраски спор методом Трухильо . На фиксированный мазок накладывают небольшой кусочек фильтровальной бумаги и на нее наносят водный раствор малахитовой зелени.

Рис. 5. Споры микроорганизмов различных типов

Подогревают препарат на пламени горелки до появления паров и выдерживают в течение 3 минут, промывают водой и докрашивают 0,25%-ным водным раствором основного фуксина 1 минуту. Промывают водой и высушивают. Микрокартина: споры зеленые, а вегетативные клетки красные.

Окраска капсул . Тело микробной клетки покрыто рыхлым слизистым слоем. У некоторых видов микроорганизмов этот слой развивается очень сильно и тогда он называется капсулой. Капсула - муциноподобное вещество, высокомолекулярный полисахарид, является производным наружного слоя оболочки. Наличие капсулы является важным диагностическим признаком при идентификации и дифференциации возбудителей некоторых инфекций (сибирской язвы, пневмококковой пневмонии и др.) (рис. 6). Патогенные микроорганизмы образуют капсулу в инфицированном организме. Она является фактором вирулентности и защищает бактериальную клетку от фагоцитоза и бактерицидного действия сыворотки крови. Капсульное вещество плохо окрашивается. Поэтому при приготовлении препарата для обнаружения капсулы выполняют следующие правила:

а) мазок готовят из свежего материала, так как капсула быстро лизируется;

б) фиксируют мазок химическим способом, для окраски применяют метохромотические краски, то есть при использовании, которых цитоплазма окрашивается в один цвет, а капсула - в другой;

в) промывать мазок водой следует слабо и кратковременно.

Техника окраска капсул по методу Ольта . Свежий горячий 2%-ный раствор сафранина наносят на фиксированный мазок, окрашивают 5-7 минут. Быстро промывают водой и высушивают. Тело клетки окрашивается в краснокирпичный цвет, капсула в - желто-оранжевый.Определение подвижности бактерий.

Подвижности бактерий важный видовой признак и производиться при диагностических исследованиях: результат учитывают при идентификации микроорганизмов. У подвижных видов способность самостоятельного поступательного (и вращательного) движения обусловлена наличием жгутиков - специальных тонких нитевидных образований.

Рис.6.Капсула у бактерий
а ‑ бацилла сибирской язвы; б - диплококк

Жгутики бывают различной длины.

Их диаметр настолько мал, что они невидимы в световом микроскопе (менее 0,2 мкм). У разных групп бактерий количество и расположение жгутиков неодинаково. Жгутики плохо воспринимают красители. Методы сложной окраски искажают подлинный вид жгутиков, поэтому в лабораториях окраску жгутиков не осуществляют, а исследуют бактерии в живом состоянии. В зависимости от расположения и количества жгутиков микробы подразделяют (рис. 7):

а) монотрихи - микроорганизмы, имеющие на одном из полюсов один жгутик, движения активные, поступательные (псевдомонас);

Рис. 7. Типы расположения жгутиков у бактерий

б) лофотрихи - микробы, имеющие на одном из полюсов пучок жгутиков (листерии);

в) амфитрихи - микробы, имеющие жгутики на обоих полюсах микробной клетки;

г) перитрихи - микробы, у которых жгутики расположены по всей поверхности клетки(E.coli).

Есть виды микроорганизмов, обладающие подвижностью, но жгутиков не имеют (спирохеты, лептоспиры). Их движение обусловлено импульсивными сокращениями двигательного фибриллярного аппарата микробной клетки.

Для определения подвижности у бактерий необходимо использовать культуру не старше суточного возраста, так как старые культуры утрачивают способность передвигаться.

Определение подвижности бактерий методом «висячая капля». Каплю молодой (18-20 часовой) бульонной культуры бактерий бактериологической петлей наносят на покровное стекло. Специальным предметным стеклом с углублением (луночкой) накрывают каплю культуры так, чтобы покровное стекло с каплей находилось в центре луночки и прилипло к предметному стеклу (края луночки предварительно слегка смазывают вазелином). Препарат перевертывают стеклом вверх, и капля «повисает» над луночкой (рис. 8). Препарат микроскопируют при затемненном поле зрения, сначала при малом, затем при среднем или большом увеличении. На светлом фоне микробы темно-серые.Методом Шукевича. Для этого каплю микробной взвеси наносят в конденсат скошенной плотной питательной среды в пробирке. Подвижные микроорганизмы, передвигаясь из конденсата, растут на поверхности среды; неподвижные виды размножаются только в конденсате среды («не заходя» на поверхность агара).

Метод «раздавленная капля». Каплю бактериальной взвеси наносят на обычное предметное стекло, осторожно накрывают покровным стеклом и слегка придавливают пальцем. Микроскопию проводят, так же как и в методе «висячая капля».

Метод посева уколом в полужидкий агар. Для этого бактериологическойпетлей производят посев исследуемой культуры уколом до дна пробирки с полужидкой питательной средой. Подвижная культура растет по всей питательной среде, образуя равномерное помутнение, а неподвижная - только по уколу в виде стержня, сохраняя прозрачность незасеянного участка среды.

ЗАНЯТИЕ 5. Лабораторная посуда и её подготовка. Питательные среды. Методы приготовления и стерилизации питательных сред. Методы стерилизации лабораторной посуды.

Цель занятия. Подготовить посуду. Приготовить питательные среды. Определить рН сред. Ознакомиться с методами стерилизации питательных сред и лабораторной посуды.

Оборудование и материалы. Штативы, пробирки, микробиологические петли, пипетки, чашки Петри, бумага. Автоклав, сушильный шкаф. Набор сред и химических реактивов. рН -метр.


Вопросы

1.История развития микры
2.Основные св-ва прокариотных микроорган
3.Типы клеточных стенок прокариотных микроорган
4.Споры и спорогенез у прокариотных микроорган
5.Внутреннее строение прокариотных микроорган
6. Жгутики, ворсинки, пили. Способы передвижения прокариот. Методы определения подвижности у бактерий
7.Простые и сложные методы окрашивания микроорган. Практическое значение
8. Культивирование аэробных микроорган в условиях лаборатории. Методы выделения чистой культуры аэробных микроорган.
9.Химический состав бактериальной кл
10. Влияние физических факторов на микроорган, практическое значение. Стерилизация.
11. Влияние химич факторов. Дезинфекция
12. Влияние биологич факторов на микроорган. Антибиотики. Определение чувствительности микроорган к антибиотикам. Дизбактериоз и способы его устранения.
13.Внешняя форма прокариотных микроорган
14.Роль отечественных учёных в развитии микры
15. Микроскопические грибы (строение, св-ва, способы размножения).
16. Микроскопические грибы (определение, классификация, практическое значен).
17.Рост и размножение прокариот. Кривая роста
18. Нормальная и анормальная микрофлора молока. Санитарно - бактериологическое исследование молока
19. Участие микроорган в круговороте углерода в природе.
20. Участие микроорган в круговороте азота в природе
21. Морфологические и физиологич особенности риккетсий, хламидий и микоплазм.
22. Актиномицеты (св-ва, практическое значение).
23. Культивирование анаэробных микроорганизмов в условиях лаборатории.
24.Питательные среды для культивирования прокариот и эукариот. Химический состав, способы приготовления, классификация.
25. Санитарно - бактериологическое исследование воды и воздуха. Практическое значение
26. Классификация микроорган по Берги. Номенклатура микроорган. Понятие о виде микроорган
27. Ферменты микроорган (св-ва, классификация, обнаружение сахаролитич и протеолитич ферментов у микроорган).
1.История развития микры
5 этапов: 1. эвристический, 2. морфологический, 3. физиологический,4. иммунологический, 5. молекулярно-генетический. 1 ) 4-3 в до н.э. - 16 в н.э. Гиппократ, Варрон. Джироламо впервые ввёл понятие инфекция, выдвинул теорию о возникновении инфекционной болезни. Он утверждал, что есть 3 пути: при непосредственном прикосновении; апосредовательно через предметы; на расстоянии. 2) первые конструкторы микроскопа - братья Ганс и Захарий Янсоны. В 1590г увеличение в 32 раза; Левенгук - увеличение в 300 раз. В 1974 - эритроциты человека, лягушек и рыб; в 1675 - простейшие; в 1677 - сперматозоиды. 3) Луи Пастер - доказал наличие жизни без кислорода - открыл анаэробных микроорганизмов, открыл процесс брожения, ввел пастеризацию. Впервые в жизни получил вакцины от холеры или пастерилёза птиц, сибирской язвы, от бешенства. Роберт Кох - открыл возбудителя туберкулёза, ввёл в практику использование плотных питат сред, разработал методы получения чистых культур микроорган, способы окрашиван микроорган. Ивановский открыл вирусы. Мечников - изучил холеру человека, туберкулёз, основоположник учения об антагонизме (противостояние между микробами). Он создал клеточную теорию иммунитета (фагоцитоз). Эрлих - теория иммунитета только гуморальная (в сыворотке крови). 4) до 1940 г. Учёные открывают явление аллергии. Райский - понятие иммунологической памяти. Медовар - явление иммунологич толерантности - неотвечаемость иммунной системы. 5) Развитие генной инженерии и биотехнологии. Мир микробов объедин вирусы, бактерии, эукариоты.
2.Основные св-ва прокариотных микроорган измов
Размер кл 0,5-5 мкм. Внешняя форма - в виде шариков - кокки, палочки, извитые, 1 клетка. Отсутствует ядро, имеется двухнитчатая кольцевая ДНК, расположенная в цитоплазме и не отделённая от неё ядерной мембраной. Основа клеточной стенки - пептидогликан или муреин. Способность к фагоцитозу и пиноцитозу отсутствует. Дыхание у бактерий аэробное, анаэробное или факультативное анаэробное. Главное св-во - наличие плазмид - более короткие участки ДНК, не связанные с ядерными. В плазмидах записывается информация об устойчивости к дезинфектантам, к антибиотикам.
3.Типы клеточных стенок прокариотных микроорган

Клеточная стенка гр+ бактерий плотно прилегает к цитоплазматической мембране, массивна, ее толщина находится в пределах 20-100 нм. Для нее характерно наличие тейхоевых кислот, они связаны с пептидогликаном и представляют собой полимеры трехатомного спирта - глицерина или пятиатомного спирта -- рибита, остатки которых соединены фосфодиэфирными связями. Тейхоевые кислоты связывают ионы магния и участвуют в транспорте их в клетку. В составе клеточной стенки гр+ прокариот в небольших количествах также найдены полисахариды, белки и липиды. Пептидогликан - основной компонент клеточной стенки и составляет от 50-90%. Значительно уже поры, чем у гр-, т.к. микрофибриллы пептидогликана сшиты компактно, поэтому при окраске фиксируют фиолетовый комплекс генцианвиолет и йода, не подвергаются обесвечиванию этанолом и поэтому не воспринимают дополнительный краситель фуксин, оставаясь окрашенными в фиолетовый цвет. Клеточная стенка гр- бактерий многослойна, толщина ее 14--17 нм. Внутренний слой - пептидогликан, который образует тонкую непрерывную сетку, окружающую клетку. Пептидогликан составляет от 10-10%. Пептидогликан содержит только мезодиаминопимелиновую кислоту и не имеет лизина. Внешний слой клеточной стенки - наружная мембрана - состоит из фосфолипидов, липополисахарида, липопротеина и белков. В наружной мембране содержатся белки основы (матричные), они прочно связаны с пептидогликановым слоем. Одной из их функций является формирование в мембране гидрофильных пор, через которые осуществляется диффузия молекул. Значительно шире поры, чем у гр+, т.к. микрофибриллы пептидогликана сшиты менее компактно, поэтому при окраске фиолетовый комплекс генцианвиолет и йода будет вымываться быстрее. При дополнительном нанесении фуксина окрашиваются в красный цвет. Матричные белки выполняют еще роль рецепторов для некоторых фагов. Липополисахарид (ЛПС) клеточных стенок гр- бактерий состоит из липида А и полисахарида. Токсичный для животных ЛПС получил название эндотоксина. Тейхоевые кислоты у гр- бактерий не обнаружены. Структурные компоненты клеточной стенки гр- бактерий отграничены от цитоплазматической мембраны и разделены промежутком, называемым периплазмой или периплазматическим пространством.
4.Споры и спорогенез у прокариотных микроорган

Споры - особый тип покоящихся репродуктивных клеток, характеризующ-ся резко сниженным уровнем метаболизма и высокой резистентностью. Бактериальная спора формируется внутри материнской клетки и наз-ся эндоспора. Споры у прокариот это не способ размножения, нужна для сохранения бактерий в неблагоприятных условиях внешней среды. Спорообразованием обладают бациллы, кластридии, споросарцина. Располагаются центрально, субтерминально (ближе к концу), терминально - на конце палочек. У бацилл диаметр споры не превышает диаметра вегетативной клетки, а у кластридий диаметр споры больше. Спора состоит из спороплазмы с нуклеоидом, белком и дипиколиновой кислотой. Спороплазма окружена цитоплазматической мембраной, к ней прилегает пептидогликановый слой, затем располагается слой кортекса, или коры. На поверхности имеется внешняя мембрана. Снаружи спора покрыта многослойной оболочкой. Спорообразование - процесс образования проходит ряд стадий: 1) подготовительная - завершается репликация ДНК; клетка содержит 2 или более нуклеоида, один из них локализуется в спорогенной зоне, остальной в спорангии, одновременно синтезируется дипиколиновая кислота. 2) стадия предспоры: со стороны цитоплазматической мембраны вегетативной клетки происходит врастание двойной мембраны, отделяющей нуклеоид с участком уплотнённой цитоплазмы, в результате образуется проспора. 3) образование оболочек - между мембранами проспоры образуется зачаточный пептидогликановый слой, над ним откладывается толстый пептидогликановый слой кортекса и вокруг его наружной мембраны формируется споровая оболочка. 4) заканчивается образование всех структур споры, она становится термоустойчивой, приобретает форму и занимает определённое положение в клетке.
5.Внутреннее строение прокариотных микроорган

Цитоплазма - сложная коллоидная сист, не подвижна, располог ядерный аппарат, кот не отделён от неё никакими мембранами. Сост из цитозоля - гомогенной фракции, включающей растворимые компоненты РНК, ф-ты, продукты метаболизма, и структурных элементов - внутрицитоплазматических мембран, рибосом (осуществляют биосинтез белка), аминок-т, включений, кот образ в процессе жизнедеятельности, и нуклеоида, капельки нейтральных жиров, воска, серы. В цитоплазме могут быть гранулы гликогена. Нуклеоид - ядро, сост из замкнутой в кольцо двуспиральной нити ДНК, кот рассматривают как одиночную бактериальную хромосому, или генофор. Цит о плазматическая мембрана - полупроницаемая липопротеидная структура, отделяющая цитоплазму от клеточной стенки - полифункциональная структура кл. Трёхслойное строение. Белково-липидный комплекс. Около 10 % сухого в-ва; 25-40 % фосфолипидов; 20-75% белка; 6% углеводов. Построена из 2 мономолекулярных слоёв, между которыми расположен липидный слой, состоящий из 2 рядов молекул липидов. Ф-ции: воспринимает всю хим инф-цию, поступающ в кл из внешн ср; явл основным осмотич барьером, благодаря кот в кл поддерживается определ осматич Р; совместно с кл стенкой участвует в регуляц роста и клет деления бактерий; в регуляции процесса репликации хромосом и плазмид; содержит большое кол-во ф-тов; с ней связаны жгутики и аппарат регулирован их движений; участвует в процессе транспорта пит в-в в кл и транспорта из кл продуктов её жизнедеятельности, различных ф-тов и экзотоксинов; в синтезе компонентов клеточн стенки и образован мезасом.
6. Жгутики, ворсинки, пили. Способы передвижения прокариот. Методы определения подвижности у бактерий

Жгутики - тонкие, длинные, нитевидные, белковые образования. Из белка лабеллина. Он обладает сократительной способностью. По хар-ру расположен жгутиков и их кол-ву различ: монотрихи (один полярно расположенный жгутик), лофотрихи (пучёк жгутиков на одном конце), анфитрихи (по 1 или пучёк на противоположных концах кл), перитрихи (по всей поверхности), атрихи (неподвижные). Они хар-ны для молодых культур, с возрастом или при недостатке пит ср жгутики утрачиваются. Подвижность бактер определ микро и макроскопич методами. При микроскопич готовят мазки раздавленной или висячей капли. макроскопич - методом укола, посевом на полужиткий агар. Жгутики сост из 3 компонентов: базальное тельце, крючок, спиральная жгутиковая нить. Баз тельце сост из системы особых колец. У гр- бактер их 2 пары: внешняя L и Р и внутрен S и М. У гр+ S и М. в рез-те их вращения относительно друг друга происходит вращение жгутика. Крючок - изогнутый белковый цилиндр, выполняющий ф-цию гибкого связывающего звена между базальным тельцем и жёсткой нитью жгутика. Ьазальное тельце - сложная структура, состоящая из центрального стержня и колец. Передвижение прокариот осуществляется вращательными, поступательными, сгибательными движениями. Пили. У бактер, являющихся носителями плазмид имеются нитевидные структуры белковой природы. Построены из белка пиллина. Синтез этих ворсинок находится под контролем плазмидных генов. Пили явл аппаратом конъюгации с их помощью устанавливается контакт между кл донорам и кл реципиентом. Существует 2 класса пилей - половые и общего типа (фимбрии). Секс-пили - 1,2 и более 5 на 1 кл. Ворсинки (фимбрии). Короткие нити, кол-во кот может достигать много тыс. с их помощью бактерии прикрепляются к определённым поверхностям. Для многих болезнетворных бактерий фибрии явл фактором патогенности, т.к. с их помощью бактерии прикрепляются к чуствит кл и явл ф-ром адгизии. Вызывают агглютинацию эритроцитов.
7.Простые и сложные методы окрашивания микроорган

Практ и ческое значение . Препараты окрашивают простым и сложным методами. Простой метод. Для окраски используют какой-либо один красящий р-р. На фиксированный мазок наносят р-р одного красителя: метиленовым синим окрашив 4 мин, генцианвиолетом - 2 мин, фуксином - 1 мин. Краску смывают водой, мазок высушивают фильтровальной бумагой. На готовый мазок наносят каплю иммерсионного масла, микроскопируют. Простая окраска позволяет быстро ознакомится с морфологией бактерий. Сложные методы. Применяют несколько р-ров красителе и реактивов. Они позволяют определить морфологию бактерий, их тинкториальные особенности и наличие структурных элементов кл, что имеет важное дифференциально-диагностическое значение. Одним из методов явл окрашивание по Грамму: на фиксированный препарат на 2 мин накладывают фильтровальную бумагу, пропитанную генцианвиолетом. Бумажку снимают и наносят р-р Люголя на 2 мин. Сливают, мазок обрабатывают спиртом 30 сек, промывают водой и окрашивают фуксином 1 мин. По рез-ту окрашивания определ тип клеточной стенки. Методы окраски спор: метод Меллера : фиксированный мазок протравляют хромовой к-той 2 мин, промывают водой, высушивают фильтровальной бумагой, накладывают фильтровальн бумагу на мазок и наносят фуксин, препарат подогревают, окрашивают 7 мин, бумажку и краску сливают и обрабатывают серной к-той 5 сек, промывают водой, окрашив метиленовой синью 4 мин, промывают водой, просушивают фильтровальной бумагой. Микроскопируют: споры розово-красные, вегетативная кл - синяя. М е тод Златогорова - такой же, только не обрабатыв хромовой к-той. Метод Пешкова : мазок фиксируют, окрашивают метиленовой синью с подогревом, смывают водой, докрашивают р-ром нейтрального Красного 10 сек, смывают водой, высушивают фильтровальной бумагой. Споры синие, кл - красная.
8. Культивирование аэробных микроорган в условиях лаборат о рии. Методы выделения чистой культуры аэробных микроорган

Микроорганизмы, выращенные на искусственных пит ср - микробными культурами, а получение их роста на пит ср - культивированием. Для культивирования необходимы условия: оптимальный температурный режим с учетом, к какой группе относится исследуемый вид бактерий, соответствующие пит ср, аэробиоз (или анаэробиоз). Для обеспечения постоянной оптимальной температуры служат термостаты. Лабор а торный термостат - шкаф с двойными стенками, снаружи облицованный материалом непроводником тепла (пластик), внутренняя стенка металлическая. Между двумя металлическими стенками находится вода (или воздух), подогреваемая электричеством. От нагретой воды через внутреннюю металлическую стенку тепло поступает в термостат. Внутри имеются сетчатые полочки, на которых размещают штативы с пробирками, чашки Петри и др. Постоянная температура поддерживается при помощи терморегуляторов - при достижении температуры заданного уровня автоматически происходит отключение прибора; при снижении температуры термостат вновь включается автоматически. Помимо обеспечения температурного режима, следует учитывать тип дыхания микроорганизмов: при аэробном типе дыхания никаких дополнительных условий создавать не нужно. Выделение из смеси одного вида микроба - выделение чистой культуры. Один из первых методов предложил Пастер - метод разведения. Исследуемый материал последовательно разводят в жидкой пит среде: берут ряд пробирок с МПБ, исследуемый материал вносят в первую пробирку, перемешивают, из неё переносят во вторую и т.д. Пастер предполагал, что в последней пробирке возможен рост одного вида микроба. Но это не так. Метод Коха - применяется плотная среда - используя принцип Пастера, исследуемый материал разводят в 4-5 пробирках с расплавленным и остужённым МПА, осторожно содержимое пробирки выливают в чашку Петри и распределяют среду тонким слоем, чашку закрывают, и когда А остынет переворачивают вверх дном. Ставят в термостат. Там где концентрация микробов меньше вырастают изолированные друг от друга колонии. С обратной стороны отмечают нужную колонию, делают посевы на МПБ и МПА и вырастает чистая культура. Метод Дригальского - метод пластинчатого посева. берут 4-5 чашек Петри. Агаровую среду расплавляют в колбе, разливают в чашки и ставят в термостат вверх дном. Шпателем Дригальского или пастеровской пипеткой равномерно растирают на поверхности среды каплю. Этим же шпателем растирают на поверхности второй чашки и т.д. Помещают в термостат вверх дном. Нужную культуру засевают в МПА и МПБ. Биологический м е тод - исследуемый материал вводят восприимчивому жив. При наличии патогенного микроба жив гибнут, их вскрывают и делают посевы. Метод Ш у кевича - подвижный микроб переходит на поверхность А из конденсационной жидкости, из верхнего края выросшей культуры делают посевы и получают чистую культуру. Химический метод - к пит ср добавляют хим в-ва, кот действуют на одних убийственно, у других задерживается рост, а третьи не восприимчивы.
9.Химический состав бактериальной Кл

75-85% вода, 25-15% - сухой остаток. Ведущая роль принадлежит 4 осн элемента, кот получил наз органогены: кислород - 30% сухого остатка, Н - 6-8%, С-45-55%, N-8-15%. Вода в кл может быть в 2 состояниях: свободная вода, кот явл растворит для кристалич в-в и в ней происходит движение ионов; связанная вода, кот входит в состав белков, жиров и углеводов. В бактериологич кл на долю белков - 60-70%, углеводы - 20%, липиды -1-2%. Повышенное содержан липидов придаёт клетке кислотно-спирто-щелочеустойчивость. Белки - высокомолекулярные полимерные соединения, образующиеся при гидролизе аминок-ты - сложные - протеиды, простые - протеины. Ф-ции белков - гл структурный материал для всех клеточн мембран, они обеспечив двигательн ф-ции, транспорт питат в-в через мембрану. У глеводы - многоатомные спирты (манит, дульцит) и полисахариды (гликоген). Играют энергитич роль в кл. Л и пиды - жирные к-ты и нейтральные жиры, фосфолипиды цитоплазматич мембраны. Явл резервом кл, использ как исходн компонент для синтеза белка. Мин в-ва - 3-10% сух остатка. Микро и макроэлементы. Микробные ф-ты. Гл св-ва: специфичность и термолябильность. У микроорганизм набор ф-тов генетически закреплён и передаётся по наследству. Различ ф-ты: 1. экзоф-ты - выдел кл во внешн среду и катализир разложен сложных в-в субстрата до более простых. 2. эндоф-ты - локализуются в самой кл и участвует во внутриклеточн процессах обмена в-в. 3. конститутивные - явл постоян компонентом кл и могут быть обнаружены даже при отсутствии в среде субстрата, кот они катализируют. 4. адаптивные - вырабатываются кл только тогда, когда в среде появл соотвествующий субстрат. Различают: оксиредуктазу, трансферазу, гидролазу, лиазу, изомеразу, лигазу и киназу. Наличие ф-тов можно обнаружить с помощью спец сред.
10. Влияние физических факторов на микроорган, практическое значение

Стерилизация . Физические факторы: температура, свет, электричество, высушивание, лучистая энергия, осмотическое Р и др. Влияние те м пературы . Для каждого вида бактерий имеется определенная температура развития, и в зависимости от пределов этой температуры бактерии могут быть разделены на 3 физиологические группы: психрофильные, мезофильные и термофильные. Высокие и низкие температуры по-разному влияют на микробы. При низких температурах микробная кл переходит в состоянии анабиоза. Низкие температуры приостанавливают гнилостные и бродильные процессы. Высокая температура в особенности нагревание паром под давлением, губительно действует на микробов. Чем больше температура выходит за пределы максимума, тем быстрее погибнут вегетативные ф-мы микроорган. В основе бактерицидного действия высоких температур лежит угнетение ферментов: каталазы, дегидраз, - денатурация белков и нарушение осмотического барьера. Споры бактерий более устойчивы к действию высокой температуры. Применение высокой температуры является самым распространенным, удобным и надежным способом стерилизации - процесс, вызывающий гибель патогенных и непатогенных микроорган и их форм в каком-либо материале. Существуют различные методы стерилизации: физический и химический. Физический - сухим жаром, влажным жаром, фильтрованием. Сухим жаром: стерилизация сухим паром в печах Пастера (сушильные шкафы) (чистую стеклянную посуду), прокаливание (фламбирование) на огне (металлические предметы). Влажным жаром: кипячение, автоклавирование (паром в автоклавах: посуда в бумаге, перевязочные материалы), текучим паром (без давления в аппарате Коха: питательные среды), тиндализация (стерилизация в водяной бане: белок содержащие в-ва), пастеризация - погибают вегетативные формы микробов, споры сохраняются, но быстрое охлаждение препятствует их прорастанию и последующему размножению микробов. Фильтрование - жидкости. Химический- в лабораторной практике имеет ограниченное применение и сводится к консервированию, с целью предупреждения бактериального загрязнения пит ср, вакцин. Пит ср консервируют хлороформом, толуолом. Вакцины - фенолом, формалином. Для дезинфекции - фенол, хлорамин, спирт.
11. Влияние химич факторов

Дезинфекция . Химиотаксис - ответная реакция бактерийной клетки на проникающее в нее вещество. Различают положительный и отрицательный химиотаксис. Если в каплю воды, содержащую подвижные бактерии, опустить один конец капилляра, наполненного раствором пептона, через несколько секунд у отверстие капилляра скопится большое количество бактерий - положительный химиотаксис. Когда бактерии уходят от диффундирующего в воду в-ва - отрицательный химиотаксис. В малых концентрациях+ химиотаксис вызывают пептон, минеральные соли. Обратное действие - свободные кислоты, щелочи и спирты. Химические вещества могут тормозить или полностью подавлятьрост микроорганизмов. Если химическоевещество подавляет рост бактерий, но после удаления его рост вновь возобновляется, то говорят о бактериостазе, т. е. о задержке роста микроба, а не о его гибели. При бактерицидном действии химический агент вызывает гибель клеток. Бактерицидное действие химических веществ имеет огромноепрактические значение, так как этот факт учитывается при использовании химического в-ва в качестве дезинфектанта. Бактерицидные хим в-ва по действию на бактерии можно подразделить на поверхностно-активные вещества, красители, спирты, кислоты, щелочи, фенолы и их производные, соли тяжелых металлов, окислители и группу формальдегида. Поверхностно-активные в-ва изменяют энергетическое соотношение. Бактериальные клетки теряют - и приобретают + заряд, что обусловливает нарушение нормальной функции цитоплазматической мембраны. Ктаким в-вам относят мыла, жирные к-ты, моющие средства. Они повреждают клеточную стенку, но не проникают в клетку.
Красители обладают свойствами задерживать рост бактерий: бриллиантовый зеленый, риванол, фуксин, метионин, кот нарушают процессы клеточного деления.
Фенол, крезол и их производные сначала повреждают клеточную стенку, а затем и белки клетки. Некоторые вещества этой группы подавляют ф-цию кофермента (дифосфопиридин нуклеотида), участвующего в дегидрировании глюкозы и молочной кислоты.
Соли тяжёлых металлов (свинец, медь, цинк, серебро, ртуть) вызывают коагуляцию белков клетки. При взаимодействии соли тяжелого металла с белком образуются альбуминат металла и свободная кислота.
Ряд металлов (серебро, медь, и др.) обладают олигодинамическим действием (бактерицидной способностью). Окислители действуют на сульфгидрильные группы активных белков. К ним относятся Cl, поражающий гидролазы, амилазы, протеазы бактерий, хлорная известь, хлорамин, употребляемые в целях дезинфекции, Хорошим окислителем является йод в виде йодного раствора, который не только окисляет активные группы белков цитоплазмы бактерий, но и вызывает их денатурацию. Окисляющим свойством обладают перманганат калия, перекись водорода и другие вещества. Спирты. Спирт в 70 %-ной концентрации обладает бактерицидной активностью в отношении белков микробной клетки, которые свертываются и выпадают на поверхность микроба и уменьшают проникновение спирта в глубоколежащие слои бактерий. Кислоты и основания. Бактерицидное действие связано с изменением рН питательной среды. На практике применяются как средства уничтожения микробов на объектах окруж ср (серная, уксусная), для создания определенной зоны рН в микробиологических средах; при изготовлении и консервировании пищевых продуктов (уксусная), т.к. позволяют создать среды, неблагоприятную для развития гнилостных микроорган. Щелочи гидролизуют коллоидные системы, вследствие чего происходит гибель микробной клетки. Формальдегид присоединяется к аминогруппам белков и вызывает их денатурацию. Химические вещества (хлор, серная кислоты, гидроокись натрия, фенолы, формальдегид) широко используют для дезинфекции и химической стерилизации. Дезинфекция -- уничтожение только патогенных микробов во внешней ср.
12. Влияние биологич факторов на микроорган. Антибиотики. О п ределение чувств и тельности микроорган к антибиотикам. Дизбактериоз и способы его устранения

Действие биологических факторов проявляется в антагонизме микробов, когда продукты жизнедеятельностиодних микробов обусловливают гибель других. Антибиотики - разновидность химиотерапевтических препаратов - хим в-ва, выделяемые некоторыми микроорган и подавляющие рост и развитие тех или иных микробов. По происхождению антибиотики можно разделить на четыре группы:1.Антибиотики, выделенные из грибов. Грибы и актиномицеты являются наиболее активными продуцентами антибиотиков. Так, Pinicillium notatum выделяет антибиотическое в-во -- пенициллин, Stгерtоmyсеs rimosus -- окситетрациклин (террамицин). 2.Антибиотики, выделенные из бактерий. Имеют меньшее практическое значение, т.к. эффективность их ниже, чем антибиотиков грибного происхождения. Продуценты антибиотиков - разнообразные бактерии. В большинстве это сапрофиты, обитающие в почве и обладающие ярко выраженной биохимической активностью. К ним относятся грамицидин, полимиксин и др. Большинство антибиотиков токсичны при парентеральном введении, поэтому применяются местно. З. Антибиотики животного происхождения: эритрин, выделяемый из эритроцитов различных животных, лизоцим - полисахарид, полученный из яичного белка. Клетками некоторых тканей продуцируется интерферон, угнетающий жизнедеятельность многих возбудителей вирусных инфекций. 4.Антибиотики растительного происхождения. Фитонциды -- ядовитые в-ва, выделяемые растениями (лук, чеснок, алоэ, крапива и др.). Это летучие в-ва, обладающие антибактериальными св-вами в отношении многих м микроорганизмов: стафилококков, стрептококков, кишечной палочки и др. Характерным св-вом антибиотиков является избирательность их действия на микробную клетку. Антибиотики поражают лишь клетки микроорганизмов. Существуют антибиотики, действующие на немногие виды микроорганизмов (пенициллин), и антибиотики, имеющие широкий спектр антимикробного действия (тетрациклин). По механизму действия на микробов антибиотики делятся на бактерицидные, убивающие бактерий (пенициллин, стрептомицин), и бактериостатические, задерживающие рост микробов (все прочие антибиотики). По действию на микроорганизмы их можно разделить на 2 группы: нарушающие синтез клеточной стенки и ее мембран; нарушающие синтез ДНК, РНК и белка. Чувствительность микроба к антибиотикам проверяется методами: 1) серийных разведений в жидкой или на плотной среде и 2) диффузии в агар с применением дисков, содержащих антибиотики. Устойчивость микробов к антибиотикам. Антибиотик наносит лишь первое повреждение возбудителю заболевания. Окончательная ликвидация инфекционного процесса осуществляется микроорганизмом, мобилизующим защитные силы на борьбу с возбудителем болезни. Прежде чем применять антибиотик, ветврач должен хорошо изучить его св-ва, знать, при каких заболеваниях он используется. Иначе могут возникнуть последствия - токсикозы, раздражение желудочно-кишечного тракта и т. п. Не следует слишком увлекаться антибиотикотерапией, т.к. неумеренный прием этих веществ может вызвать развитие суперинфекций - заболеваний, связанных с нарушением нормальных взаимоотношений между обитателями животного организма. В этом случаи угнетается возбудитель инфекции и нормальная микрофлора организма. Начинает усиленно размножаться нечувствительная к антибиотику микрофлора, вызывая дисбактериоз, колиты и др. Ко многим антибиотикам развивается аллергия. Целый ряд микробов под влиянием антибиотиков утрачивают чувствительность к тому или иному антибиотику и образуют антибиотико-резистентные формы. У таких микробов изменяются ферментативные св-ва и антигенная структура, что приводит к усилению вирулентности. Применение антибиотиков бессмысленно. С целью предотвращения возникновения резистентных микробов при лечении необходимо комбинировать антибиотики или использовать их в сочетании с другими химическими средствами.
13.Внешняя форма прокариотных микроорган

По форме клеток бактерии подразделяются на три основные группы: шаровидные, или кокки, палочковидные и извитые. Кокки - имеют вид правильного шара, эллипса, боба, от взаимного расположения клеток после деления различают: микрококки, стафилококки, диплококки, стрептококки, тетракокки и сарцины. Образуются при делении в одной плоскости. Микрококки делятся в равных плоскостях и располагаются одиночно, парами или беспорядочно. Стафилококки - делятся в различных плоскостях и располагающиеся несимметричными гроздями. Диплококки - делятся в одной плоскости, образуя попарно соединенные кокки. Стрептококки - кокки, расположенные в виде цепочки. Тетракокки - делятся в двух взаимно перпендикулярных плоскостях и располагаются по 4. Сарцины - делятся в трех взаимно перпендикулярных плоскостях и образуют правильные пакеты по 8--1б клеток и более. Палочковидные - имеют осевую симметрию и цилиндрическую форму тела с округлыми или заостренными концами. Делятся на две группы: неспоровые палочки - бактерии и палочки, образующие споры, - бациллы. Палочки, у которых диаметр споры превышает ширину вегетативной клетки - клостридии из-за своей веретенообразной ф-мы. В зависимости от взаимного расположения клеток палочковидные бактерии подразделяют на одиночные и бессистемные скопления, диплобактерии и диплобациллы (располагающиеся попарно), а также стрептобактерии и стрептобациллы (формы, образующие длинные или короткие цепочки). К палочковидным формам т/ж относят коринебактерии и фузобактерии. Коринебактерии - прямые или изогнутые палочки с булавовидными утолщениями на концах. Фузобактерии -- длинные, толстые, с заостренными концами палочки. Извитые - обладают спиральной симметрией. К ним относятся вибрионы, спириллы и спирохеты. Вибрионы - цилиндрическая изогнутая форма, тело представляет один неполный завиток в виде запятой. Спириллы - имеют форму спирально извитых палочек с 4-6 витками. Спирохеты - эластичные спиралевидные длинные клетки, состоящие из осевой нити (аксистиля), цитоплазмы с рибосомами и включениями, нуклеоида, мезосом, цитоплазматической мембраны и клеточной стенки. По кол-ву осевых фибрилл различ: спирохеты (более 100), кристиспиры (более 100), трепонемы (1-4), боррелии (15-20), лептоспиры (2).
14.Роль отечественных учёных в развитии микры

Велика заслуга в развитии микробиологии Мечникова. К числу важнейших работ в области микробиологии относятся его исследования патогенеза холеры человека, туберкулеза. Он является основоположником учения о микробном антагонизме, ставшем основой для развития науки об антибиотикотерапии. Обосновал теорию долголетия и предложил для продления человеческой жизни использовать простоквашу, которая впоследствии была названа мечниковской. Он организовал первую в России бактериологическую станцию. Развитил нового направления в микробиологии - иммунологию - учения о невосприимчивости организма к инфекционным болезням. Создал фагоцитарную теорию иммунитета, раскрыл сущность воспаления как защитной реакции организма. Гамалеи - открыл птичий вибрион (холероподобное заболевание птиц), названный в честь Мечникова его именем. Гамался впервые наблюдал и описал явление спонтанного лизиса бактерий под влиянием бактериофага, принимал активное участие в создании первой бактериологической станции в России и ввел в практику прививки против бешенства. Габричевский первым начал читать курс бактериологии в Московском университете. Выпустил учебник «Медицинская микро6иология», создал в Москве первый бактериологический институт. Изготовливал противодифтерийную сыворотку. Установил значение гемолитического стрептококка как возбудителя скарлатины, разработал и предложил вакцину против неё. Изучил кишечную палочку и се роль в патологии человека. Ценковский впервые установил близость бактерий и сине-зелёных водорослей и описал явление симбиоза; обосновал классификацию микробов, отнеся бактерий к растительным организмам; открыл возбудителя клека и разработал способы его предупреждения в сахарном производстве. Изготов и т.д.................