В естественных условиях клетки миокарда постоянно находятся в состоянии ритмической активности. В период диастолы мембранный потенциал покоя клеток миокарда стабилен - минус 90 мВ, его величина выше, чем в клетках водителей ритма. В клетках рабочего миокарда (предсердий, желудочков) мембранный потенциал, в интервалах между следующими друг за другом ПД, поддерживается на более или менее постоянном уровне.

Потенциал действия в клетках миокарда возникает под влиянием возбуждения клеток водителей ритма, которое достигает кардиомиоцитов, вызывая деполяризацию их мембран (рисунок 3).

Потенциал действия клеток рабочего миокарда состоит из фазы быстрой деполяризации (0 фаза), начальной быстрой реполяризации (1 фаза), переходящей в фазу медленной реполяризации (фаза плато, или 2 фаза) и фазы быстрой конечной реполяризации (3 фаза) и фазы покоя -- (4фаза).

Фаза быстрой деполяризации создается активацией быстрых потенциалозависимых натриевых каналов, обеспечивающих резкое повышение проницаемости мембраны для ионов натрия, что приводит к возникновению быстрого входящего натриевого тока. Мембранный потенциал уменьшается от минус 90 мВ до плюс 30 мВ, т.е. во время пика происходит изменение знака мембранного потенциала. Амплитуда потенциала действия клеток рабочего миокарда составляет 120 мВ.

При достижении мембранного потенциала плюс 30 мВ инактивируются быстрые натриевые каналы. Деполяризация мембраны вызывает активацию медленных натрий-кальциевых каналов. Поток ионов Са 2+ внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато клетка переходит в состояние абсолютной рефрактерности.

Затем происходит активация калиевых каналов. Выходящий из клетки поток ионов К + обеспечивает быструю реполяризацию мембраны (фаза 3), во время которой медленные натрий-кальциевые каналы закрываются, что ускоряет процесс реполяризации.

Реполяризация мембраны вызывает постепенное закрывание калиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается -- это период так называемой относительной рефрактерности.

Конечная реполяризация в клетках миокарда обусловлена постепенным уменьшением проницаемости мембраны для кальция и повышением проницаемости для калия. В результате входящий ток кальция уменьшается, а выходящий ток калия возрастает, что обеспечивает быстрое восстановление мембранного потенциала покоя (фаза 4) .

Способность клеток миокарда в течение жизни человека находиться в состоянии непрерывной ритмической активности обеспечивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na + , а в клетку возвращаются ионы К + . Ионы Са 2+ , проникшие в цитоплазму, поглощаются эндоплазматической сетью.

Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках, в результате, работа насосов нарушается, вследствие этого, уменьшается электрическая и механическая активность миокардиальных клеток.

Потенциал действия и сокращение миокарда совпадают во времени. Поступление кальция из наружной среды в клетку создает условия для регуляции силы сокращения миокарда.

Удаление кальция из межклеточного пространства приводит к разобщению процессов возбуждения и сокращения миокарда. Потенциалы действия при этом регистрируются почти в неизменном виде, но сокращения миокарда не происходит. Вещества, блокирующие вход кальция во время генерации потенциала действия, вызывают аналогичный эффект. Вещества, угнетающие кальциевый ток, уменьшают длительность фазы плато и потенциала действия и понижают способность миокарда к сокращению.

При повышении содержания кальция в межклеточной среде и при введении веществ, увеличивающих вход ионов кальция в клетку, сила сердечных сокращений увеличивается.

Соотношения между фазами ПД миокарда и величиной его возбудимости показаны на рисунке 5.

Вследствие деполяризации, мембрана кардиомиоцитов становится абсолютно рефрактерна. Период абсолютной рефрактерности у нее продолжается 0,27 с. В этот период мембрана клетки становится невосприимчивой к действию других раздражителей. Наличие длительной рефрактерной фазы препятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции.

Фаза рефрактерности несколько короче длительности ПД миокарда желудочков, который длится около 0,3 с.

Длительность ПД предсердий - 0,1 с, столько же длиться систола предсердий.

Период абсолютной рефрактерности сменяется периодом относительной рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения. Он продолжается 0,03 с.

После периода относительной рефрактерности наступает короткий период супернормальной возбудимости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения.

Определяется в основном трансмембранным градиентом концентрации ионов К+ и у большинства кардиомиоцитов (кроме синусового узла и АВ-узла) составляет от минус 80 до минус 90 мВ. При возбуждении в кардиомиоциты входят катионы, и возникает их временная деполяризация - потенциал действия.

Ионные механизмы потенциала действия в рабочих кардиомиоцитах и в клетках синусового узла и АВ-узла разные, поэтому и форма потенциала действия также различается ( рис. 230.1).

У потенциала действия кардиомиоцитов системы Гиса-Пуркинье и рабочего миокарда желудочков выделяют пять фаз ( рис. 230.2). Фаза быстрой деполяризации (фаза 0) обусловлена входом ионов Na+ по так называемым быстрым натриевым каналам . Затем, после кратковременной фазы ранней быстрой реполяризации (фаза 1), наступает фаза медленной деполяризации, или плато (фаза 2). Она обусловлена одновременным входом ионов Са2+ по медленным кальциевым каналам и выходом ионов К+. Фаза поздней быстрой реполяризации (фаза 3) обусловлена преобладающим выходом ионов К+. Наконец, фаза 4 - это потенциал покоя .

Брадиаритмии могут быть обусловлены либо снижением частоты возникновения потенциалов действия, либо нарушением их проведения.

Способность некоторых клеток сердца к самопроизвольному образованию потенциалов действия называется автоматизмом . Этой способностью обладают клетки синусового узла , проводящей системы предсердий , АВ-узла и системы Гиса-Пуркинье . Автоматизм обусловлен тем, что после окончания потенциала действия (то есть в фазу 4) вместо потенциала покоя наблюдается так называемая спонтанная (медленная) диастолическая деполяризация. Ее причина - вход ионов Na+ и Са2+. Когда в результате спонтанной диастолической деполяризации мембранный потенциал достигает порога, возникает потенциал действия.

Проводимость , то есть скорость и надежность проведения возбуждения, зависит, в частности, от характеристик самого потенциала действия: чем ниже его крутизна и амплитуда (в фазу 0), тем ниже скорость и надежность проведения.

При многих заболеваниях и под действием ряда лекарственных средств скорость деполяризации в фазу 0 уменьшается. Кроме того, проводимость зависит и от пассивных свойств мембран кардиомиоцитов (внутриклеточного и межклеточного сопротивления). Так, скорость проведения возбуждения в продольном направлении (то есть вдоль волокон миокарда) выше, чем в поперечном (анизотропное проведение).

Во время потенциала действия возбудимость кардиомиоцитов резко снижена - вплоть до полной невозбудимости. Это свойство называется рефрактерностью . В период абсолютной рефрактерности никакой раздражитель не способен возбудить клетку. В период относительной рефрактерности возбуждение возникает, но только в ответ на надпороговые раздражители; скорость проведения возбуждения снижена. Период относительной рефрактерности продолжается вплоть до полного восстановления возбудимости. Выделяют также эффективный рефрактерный период, при котором возбуждение может возникнуть, но не проводится за пределы клетки.

Сердце — мышечный орган, состоящий из четырех камер:

  • правого предсердия, собирающего венозную кровь из организма;
  • правого желудочка, нагнетающего венозную кровь в малый круг кровообращения — в легкие, где и происходит газообмен с атмосферным воздухом;
  • левого предсердия, собирающего обогащенную кислородом кровь из легочных вен;
  • левого желудочка, обеспечивающего продвижение крови ко всем органам организма.

Кардиомиоциты

Стенки предсердий и желудочков состоят из поперечно-полосатой мышечной ткани, представленной кардиомиоцитами и имеющей ряд отличий от ткани скелетных мышц. Кардиомиоциты составляют около 25% от общего числа клеток сердца и около 70% массы миокарда. В составе стенок сердца имеются фибробласты, гладкомышечные клетки сосудов, эндотелиальные и нервные клетки.

В мембране кардиомиоцитов содержатся белки, выполняющие транспортные, ферментативные и рецепторные функции. Среди последних — рецепторы гормонов, катехоламинов и других сигнальных молекул. Кардиомиоциты имеют одно или несколько ядер, множество рибосом и аппарат Гольджи. Они способны синтезировать сократительные и белковые молекулы. В этих клетках синтезируются некоторые белки, специфические для определенных стадий клеточного цикла. Однако кардиомиоциты рано теряют способность делиться и их созревание, равно как и приспособление к возрастающим нагрузкам, сопровождается увеличением массы клеток и их размеров. Причины потери клетками способности делиться остаются неясными.

Кардиомиоциты отличаются по своему строению, свойствам и функциям. Различают типичные, или сократительные, кардиомиоциты и атипичные, формирующие в сердце проводящую систему.

Типичные кардиомиоциты - сократительные клетки, образующие предсердия и желудочки.

Атипичные кардиомиоциты - клетки проводящей системы сердца, обеспечивающие возникновение возбуждения в сердце и проведение его от места возникновения к сократительным элементам предсердий и желудочков.

Абсолютное большинство кардиомиоцитов (волокон) сердечной мышцы принадлежит к рабочему миокарду, который обеспечивает . Сокращение миокарда называют, расслабление - . Имеются также атипичные кардиомиоциты и волокна сердца, функцией которых является генерация возбуждения и проведение его к сократительному миокарду предсердий и желудочков. Эти клетки и волокна формируют проводящую систему сердца.

Сердце окружено перикардом — околосердечной сумкой, отграничивающей сердце от соседних органов. Перикард состоит из фиброзного слоя и двух листков серозного перикарда. Висцеральный листок, называемый эпикардом , сращен с поверхностью сердца, а париетальный — с фиброзным слоем перикарда. Щель между этими листками заполнена серозной жидкостью, наличие которой уменьшает трение сердца с окружающими структурами. Относительно плотный наружный слой перикарда защищает сердце от перерастяжения и чрезмерного переполнения кровью. Внутренняя поверхность сердца представлена эндотелиальной выстилкой, называемой эндокардом. Между эндокардом и перикардом располагается миокард - сократительные волокна сердца.

Совокупность атипичных кардиомиоцитов, образующих узлы: синоатриальный и атриовентрикулярный, межузловые тракты Бахмана, Венкебаха и Тореля, пучки Гиса и волокона Пуркинье.

Функциями проводящей системы сердца являются генерация потенциала действия, проведение его к сократительному миокарду, инициирование сокращения и обеспечение определенной предсердий и желудочков. Возникновение возбуждения в водителе ритма осуществляется с определенным ритмом произвольно, без воздействия внешних стимулов. Это свойство клеток водителя ритма получило название .

Проводящая система сердца состоит из узлов, пучков и волокон, сформированных атипичными мышечными клетками. В ее структуру входит синоатриальный (СА) узел, расположенный в стенке правого предсердия спереди устья верхней полой вены (рис. 1).

Рис. 1. Схематическое строение проводящей системы сердца

От СА-узла отходят пучки (Бахмана, Венкебаха, Тореля) атипичных волокон. Поперечный пучок (Бахмана) проводит возбуждение к миокарду правого и левого предсердий, а продольные — к атриовентрикулярному (АВ) узлу, расположенному под эндокардом правого предсердия в его нижнем углу в области, прилегающей к межпредсердной и атриовентрикулярной перегородкам. От АВ-узла отходит пучок Гпса. Он проводит возбуждение к миокарду желудочков и поскольку на границе миокарда предсердий и желудочков располагается соединительнотканная перегородка, образованная плотными фиброзными волоконами, то у здорового человека пучок Гиса является единственным путем, по которому потенциал действия может распространиться к желудочкам.

Начальная часть (ствол пучка Гиса) расположена в перепончатой части межжелудочковой перегородки и делится на правую и левую ножки пучка Гиса, которые также находятся в межжелудочковой перегородке. Левая ножка делится на переднюю и заднюю ветви, которые, как и правая ножка пучка Гиса, ветвятся и заканчиваются волокнами Пуркинье. Волокна Пуркинье расположены в субэндокардиальной области сердца и проводят потенциалы действия непосредственно к сократительному миокарду.

Механизм автоматик и проведение возбуждения по проводящей системе

Генерация потенциалов действия осуществляется в нормальных условиях специализированными клетками СА-узла, который называют водителем ритма 1-го порядка или пейсмекером. У здорового взрослого человека в нем ритмично генеририруются потенциалы действия с частотой 60-80 за 1 мин. Источником этих потенциалов являются атипичные круглые клетки СА-узла, имеющие небольшие размеры, содержащие мало органелл и редуцированный сократительный аппарат. Иногда их называют Р-клетками. В узле имеются также клетки вытянутой формы, занимающие промежуточное положение между атипичными и обычными сократительными кардиомиоцитами предсердий. Их называют переходными клетками.

Р-клетки покрыты , содержащей ряд разнообразных ионных каналов. Среди них имеются пассивные и потенциалзависимые ионные каналы. Потенциал покоя в этих клетках составляет 40-60 мВ и является неустойчивым, что обусловлено различной проницаемостью ионных каналов. Во время диастолы сердца мембрана клетки самопроизвольно медленно деполяризуется. Этот процесс назван медленной диастолической деполяризацией (МДД) (рис. 2).

Рис. 2. Потенциалы действия сократительных миоцитов миокарда (а) и атипичных клеток СА-узла (б) и их ионные токи. Пояснения в тексте

Как видно на рис. 2, сразу же после окончания предыдущего потенциала действия начинается спонтанная МДД мембраны клетки. МДД в самом начале ее развития обусловлена входом ионов Na+ через пассивные натриевые каналы и задержкой выхода ионов К+ вследствие закрытия пассивных калиевых каналов и снижения выхода ионов К+ из клетки. Вспомним, что выходящие через эти каналы ионы К обычно обеспечивают реполяризацию и даже некоторую степень гиперполяризации мембраны. Очевидно, что снижение проницаемости калиевых каналов и задержка выхода ионов К+ из Р-клетки вместе с поступлением в клетку ионов Na+ будут вести к накоплению положительных зарядов на внутренней поверхности мембраны и развитию МДД. МДД в области значений E кр (около-40 мВ) сопровождается открытием потенциалзависимых медленных кальциевых каналов, через которые в клетку поступают ионы Са 2+ , обусловливающие развитие поздней части МДД и фазы ноль потенциала действия. Хотя допускается, что в это время возможно дополнительное поступление в клетку ионов Na+ через кальциевые каналы (кальций-натриевые каналы), но решающую роль в развитии самоускоряющейся фазы деполяризации и перезарядке мембраны играют входящие в пейсмекерную клетку ионы Са 2 +. Генерация потенциала действия развивается относительно медленно, так как вход ионов Са 2+ и Na+ в клетку происходит через медленные ионные каналы.

Перезарядка мембраны ведет к инактивации кальциевых и натриевых каналов и прекращению входа ионов в клетку. К этому времени нарастает выход из клетки ионов К+ через медленные потенциалзависимые калиевые каналы, открытие которых происходит при E кр одновременно с активацией упоминавшихся кальциевых и натриевых каналов. Выходящие ионы К+ реполяризуют и несколько гиперполяризуют мембрану, после чего их выход из клетки задерживается и таким образом процесс самовозбуждения клетки повторяется. Ионное равновесие в клетке поддерживается работой натрий-калиевого насоса и натрий-кальциевого обменного механизма. Частота возникновения потенциалов действия в пейсмекере зависит от скорости спонтанной деполяризации. При возрастании этой скорости частота генерации пейсмекерных потенциалов и частота сердечных сокращений увеличиваются.

Из СА-узла потенциал распространяется со скоростью около 1 м/с в радиальном направлении на миокард правого предсердия и по специализированным проводящим путям на миокард левого предсердия и к АВ-узлу. Последний сформирован теми же типами клеток, что и СА-узел. Они также обладают способностью самовозбуждаться, но в нормальных условиях она не проявляется. Клетки АВ-узла могут начать генерировать потенциалы действия и стать водителем ритма сердца, когда к ним не поступают потенциалы действия от СА-узла. В обычных условиях потенциалы действия, возникшие в СА-узле, проводятся через область АВ-узла к волокнам пучка Гиса. Скорость их проведения в области АВ-узла резко уменьшается и промежуток времени, необходимый для распространения потенциала действия, удлиняется до 0,05 с. Эту временную задержку проведения потенциала действия в области АВ-узла называют атриовентрикулярной задержкой.

Одной из причин АВ-задержки является особенность ионных и, прежде всего кальциевых ионных, каналов мембран клеток, формирующих АВ-узел. Это находит свое отражение в более низкой скорости МДД и генерации потенциала действия этими клетками. Кроме того, клетки промежуточного участка АВ-узла характеризуются более продолжительным периодом рефрактерности, превышающим по времени фазу реполяризации потенциала действия. Проведение возбуждения в области АВ-узла предполагает его возникновение и передачу с клетки на клетку, поэтому замедление этих процессов на каждой клетке, участвующей в проведении потенциала действия, обусловливает более длительное суммарное время проведения потенциала через АВ-узел.

АВ-задержка имеет важное физиологическое значение в установлении определенной последовательности предсердий и желудочков. В нормальных условиях систола предсердий всегда предшествует систоле желудочков и систола желудочков начинается сразу же после завершения систолы предсердий. Именно благодаря АВ-задержке проведения потенциала действия и более позднего возбуждения миокарда желудочков по отношению к миокарду предсердий, желудочки заполняются необходимым объемом крови, а предсердия успевают совершить систолу (прссистолу) и изгнать дополнительный объем крови в желудочки. Объем крови в полостях желудочков, накапливаемый к началу их систолы, способствует осуществлению наиболее эффективного сокращения желудочков.

В условиях, когда нарушена функция СА-узла или имеется блокада проведения потенциала действия от СА-узла к АВ-узлу, роль водителя ритма сердца может взять на себя АВ-узел. Очевидно, что вследствие более низких скоростей МДД и развития потенциала действия клеток этого узла частота генерируемых им потенциалов действия будет ниже (около 40- 50 в 1 мин), чем частота генерации потенциалов клетками С А-узла.

Время от момента прекращения поступления потенциалов действия от водителя ритма к АВ-узлу до момента проявления его называют преавтоматической паузой. Ее длительность обычно находится в пределах 5-20 с. В это время сердце не сокращается и чем короче преавтоматическая пауза, тем лучше для больного человека.

При нарушении функции СА- и АВ-узлов водителем ритма может стать пучок Гиса. При этом максимальная частота его возбуждений составит 30-40 в 1 мин. При такой частоте сокращений сердца даже в состоянии покоя у человека будут проявляться симптомы недостаточности кровообращения. Волокна Пуркинье могут генерировать до 20 импульсов в 1 мин. Из приведенных данных видно, что в проводящей системе сердца существует градиент автомашин — постепенное снижение частоты генерации потенциалов действия ее структурами по направлению от СА-узла к волокнам Пуркинье.

Преодолев АВ-узел, потенциал действия распространяется на пучок Гиса, затем на правую ножку, левую ножку пучка Гиса и ее ветви и достигает волокон Пуркинье, где скорость его проведения возрастает до 1-4 м/с и за 0,12-0,2 с потенциал действия достигает окончаний волокон Пуркинье, с помощью которых проводящая система взаимодействует с клетками сократительного миокарда.

Волокна Пуркинье сформированы клетками, имеющими диаметр 70-80 мкм. Полагают, что это является одной из причин того, что скорость проведения потенциала действия данными клетками достигает наиболее высоких значений — 4 м/с по сравнению со скоростью в любых других клетках миокарда. Время проведения возбуждения по волокнам проводящей системы, связывающим СА- и АВ-узлы, АВ-узлу, пучку Гиса, его ножкам и волокнам Пуркинье до миокарда желудочков определяет продолжительность интервала РО на ЭКГ и колеблется в норме в пределах 0,12-0,2 с.

Не исключается, что в передаче возбуждения с волокон Пуркинье на сократительные кардиомиоциты принимают участие переходные клетки, характеризующиеся как промежуточные между клетками Пуркинье и сократительными кардиомио- цитами, структурой и свойствами.

В скелетной мышце к каждой клетке поступает потенциал действия по аксону мотонейрона и после сииаптической передачи сигнала на мембране каждого миоцита генерируется собственный потенциал действия. Взаимодействие волокон Пуркинье и миокарда совершенно иные. По всем волокнам Пуркинье к миокарду предсердий и обоих желудочков проводится потенциал действия, возникший в одном источнике — водителе ритма сердца. Этот потенциал проводится в точки контакта окончаний волокон и сократительных кардиомиоцитов в субэндокардиальной поверхности миокарда, но не к каждому миоциту. Между волокнами Пуркинье и кардиомиоцитами отсутствуют синапсы и нейромедиаторы и возбуждение может быть передано с проводящей системы на миокард через ионные каналы щелевых контактов.

Возникающий в ответ на мембранах части сократительных кардиомиоцитов потенциал проводится по поверхности мембран и по Т-трубочкам внутрь миоцитов с помощью локальных круговых токов. Потенциал передается также соседним клеткам миокарда через каналы щелевых контактов вставочных дисков. Скорость передачи потенциала действия между миоцитами достигает в миокарде желудочков 0,3-1 м/с, что способствует синхронизации сокращения кардиомиоцитов и более эффективному сокращению миокарда. Нарушение передачи потенциалов через ионные каналы щелевых контактов может быть одной из причин десинхронизации сокращения миокарда и развития слабости его сокращения.

В соответствии со строением проводящей системы потенциал действия достигает первоначально верхушечной области межжелудочковой перегородки, сосочковых мышц, верхушки миокарда. Возникшее в ответ на поступление этого потенциала в клетках сократительного миокарда возбуждение распространяется в направлениях от верхушки миокарда к его основанию и от эндокардиальной поверхности к эпикардиальной.

Функции проводящей системы

Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Возбуждение распространяется по предсердиям со скоростью 1 м/с, достигая атриовентрикулярного узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и атриовентрикулярным узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих проводящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В атриовентрикулярном узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения (построен по принципу синапса) возникает некоторая задержка проведения возбуждения (скорость распространения составляет 0,2 м/с). Вследствие задержки возбуждение доходит до атриовентрикулярного узла и волокон Пуркинье лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждение в пучке Гиса и в волокнах Пуркинье достигает 4,5-5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т.е. синхронно. Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через атриовентрикулярный пучок, а по клеткам рабочего миокарда, т.е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались бы в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности. Это не позволило бы создать достаточного давления, обеспечивающего выброс крови в аорту.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца:

  • спонтанную деполяризацию;
  • ритмическую генерация импульсов (потенциалов действия);
  • необходимую последовательность (координацию) сокращений предсердий и желудочков;
  • синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

МП покоя сократительного кардиомиоцита составляет -80 (- 90) мВ.

- Быстрая начальная деполяризация (фаза 0) возникает вследствие открытия потенциалозависимых быстрых Na+-каналов, ионы Na+ быстро устремляются внутрь клетки и меняют заряд внутренней поверхности мембраны с отрицательного на положительный.

- Начальная быстрая реполяризация (фаза 1) -- результат закрытия
Na+-каналов, входа в клетку ионов Cl- и выхода из неё ионов K+.

Последующая продолжительная фаза плато (фаза 2) -- МП некоторое время сохраняется приблизительно на одном уровне) -- результат медленного открытия потенциалозависимых Ca2+-каналов: ионы Ca2+ поступаютвнутрь клетки, равно как ионы и Na+, при этом ток ионов K+ из клетки сохраняется.

- Конечная быстрая реполяризация (фаза 3) возникает в результате за-
крытия Ca2+-каналов на фоне продолжающегося выхода K+ из клетки
через K+-каналы.

- В фазу покоя (фаза 4) происходит восстановление МП за счёт обмена ионов Na+ на ионы K+ посредством функционирования специализированной трансмембранной системы -- Na+-К+-насоса.

Указанные процессы касаются именно рабочего кардиомиоцита. После абсолютного рефрактерного периода возникает состояние относительной рефрактерности, в котором миокард остаётся до фазы 4, т.е. до возвращения МП к исходному уровню. В период относительной рефрактерности сердечная мышца может быть возбуждена, но только в ответ на очень сильный стимул. Сердечная мышца не может, как скелетная мышца, находиться в тетаническом сокращении.

Автоматизм -- способность пейсмейкерных клеток инициировать возбуждение спонтанно, без участия нейрогуморального контроля. Возбуждение, приводящее к сокращению сердца, возникает в специализированной проводящей системе сердца и распространяется посредством неё ко всем частям миокарда.
Проводящая система сердца. Структуры, входящие в состав проводящей системы сердца: синусно-предсердный узел, межузловые предсердные пути, АВ-соединение (нижняя часть проводящей системы предсердий, прилегающая к АВ-узлу, собственно АВ-узел, верхняя часть пучка Хиса (Гиса), пучок Хиса (Гиса) и его ветви, система волокон Пуркинье.
Водители ритма. Все отделы проводящей системы способны генерировать ПД с определённой частотой, определяющей в конечном итоге ЧСС, -- т.е. бытьводителем ритма. Однако синусно-предсердный узел генерирует ПД быстрее других отделов проводящей системы, и деполяризация от него распространяется в другие участки проводящей системы прежде, чем они начнут спонтанно возбуждаться. Таким образом, синусно-предсердный узел -- ведущий водитель ритма, или водитель ритма первого порядка. Частота его спонтанных разрядов определяет частоту биений сердца (в среднем 60-90 в минуту).



Градиент автоматии. В норме потенциалы первично возникают в синоатриальном узле за счет наличия клеток - водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоатриального узла и при включении дополнительного раздражения.

При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50-60 раз в мин. в атриовентрикулярном узле - водителе ритма второго порядка. При нарушении в атриовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30-40 раз в минуту - это водитель ритма третьего порядка.

Градиент автоматии - это уменьшение способности к автоматии по мере удаления от синоатриального узла, то есть от места непосредственной генерации импульсов автоматии.

Пейсмейкерные потенциалы. МП пейсмейкерных клеток после каждого ПД возвращается к пороговому уровню возбуждения. Этот потенциал, называемый препотенциалом (пейсмейкерным потенциалом ) -- триггер для следующего потенциала. На пике каждого ПД после деполяризации возникает калиевый ток, приводящий к запуску процессов реполяризации. Когда калиевый ток и выход ионов K+ уменьшаются, мембрана начинает деполяризоваться, формируя первую часть препотенциала. Открываются Ca2+ -каналы двух типов: временно открывающиеся Ca2+в-каналы и длительно действующие Ca2+ д-каналы.Кальциевый ток, идущий по Ca2+в-каналам, образует препотенциал, кальциевый ток в Ca2+д-каналах создаёт ПД.

ПД в синусно-предсердном и АВ-узлах создаются главным образом ионами Ca2+ и некоторым количеством ионов Na+. У этих потенциалов отсутствует фаза быстрой деполяризации перед фазой плато, которая имеется в других частях проводящей системы и в волокнах предсердия и желудочков.



Экстрасистола -- преждевременное (внеочередное) сокращение сердца, инициированное возбуждением, исходящим из миокарда предсердий, AВ-соединения или желудочков. Экстрасистола прерывает доминирующий (обычно синусовый) ритм. Во время экстрасистолы пациенты обычно ощущают перебои в работе сердца.

Постэкстрасистолическая потенциация. Изменение ритма сердца может воздействовать на сократимость миокарда и насосную функцию сердца без изменения длины кардиомиоцитов. Желудочковые экстрасистолы изменяют состояние миокарда таким образом, что последующие сокращения более сильны, чем нормальные предыдущие сокращения. Постэкстрасистолическая потенциация не зависит от наполнения желудочков, поскольку она может возникать в изолированной сердечной мышце в результате повышения содержания внутриклеточного Ca2+. Устойчивое увеличение сократимости может быть вызвано нанесением парных электрических стимулов на сердце, когда второй стимул следует тотчас после окончания рефрактерного периода от первого.

В состоянии покоя сердце нагнетает от 4 до 6 л крови в минуту, за день -- до 8-10 тыс. л крови. Тяжёлая работа сопровождается 4-7-кратным увеличением перекачиваемого объёма крови.

Показатели работы сердца рефлекторно изменяются в зависимости от напряжения О 2 и СО 2 в крови, от объема протекающей крови, от эмоционального состояния и физической нагрузки. Так, при физической нагрузке ударный объем может увеличиться в 2 - 3 раза, частота сокращений - в 3 - 4 раза, минутный объем кровообращения - в 4 - 5 раз.

Механизмы регуляции работы сердца:

1. Интракардиальные:

·Внутриклеточные (геторометрический и гомеометрический механизмы)

·Межклеточные механизмы

·Интракардиальные сердечные рефлексы

2. Экстракардиальные:

·Нервные

·Гуморальные

Интракардиальные механизмы в свою очередь подразделяются на миогенные (внутриклеточные), межклеточные и нервные (за счет внутрисердечной нервной системы).

·Внутриклеточные механизмы обусловлены свойствами кардиомиоцитов и лежат в основе закона Франка - Старлинга : чем больше приток крови, тем больше растягивается миокард во время диастолы, тем сильнее он сокращается во время систолы, т.е. чем больше крови поступает в желудочки, тем сильнее они потом сокращаются в систолу. Такой тип гемодинамической регуляции называется гетерометрическим . При растяжении напряжение развиваемое мышцей действительно увеличивается, но не за счет «увеличения зоны контакта актиновых и миозиновых протофибрил», а за счет увеличения вклада пассивного (эластичного) компонента в общее развиваемоемышечным волокном напряжение.Также этот механизм объясняется способностью Са2+ выходить из саркоплазматического ретикулума. Чем больше растянут саркомер, тем больше выделяется Са2+ в цитоплазму, обеспечивая большее сцепление актиновых и миозиновых нитей, и тем больше сила сокращений сердца.

Рис. Зависимость между длиной саркомера, степенью пере­крытия актиновых и миозиновых нитей и развитием напряжения для препарата одиночного волокна миоцита. Объяснение в тексте. Активное напряжение при растяжении саркомера более чем на 2,2 мкм уменьшается.

Этот механизм служит для согласования систолических объёмов кровотока правой и левой половины сердца. Их систолический объём кровотока может изменяться от сокращения к сокращению. Если систолический объём левой половины во время какого-либо сокращения будет повышенным из-за значительного конечно-диастолического давления или объёма, при следующем сокращении ударный объём уменьшится и будет таким же, как и выброс правой половины сердца. Этот механизм саморегуляции включается при перемене положения тела, при резком увеличении объема циркулирующей крови (при переливании), а также при фармакологической блокад симпатической нервной системы бета-симпатолитиками.

·Гомеометрическая внутриклеточная регуляция сердца (феномен Анрепа и хронотропная зависимость Боудича)

Гомеометрический механизм не зависит от исходной длины кардиомиоцитов. Сила сердечных сокращений может возрастать при увеличении частоты сокращений сердца. Чем чаще оно сокращается, тем выше амплитуда его сокращений («лестница» Боудича ), однако при повышении ЧСС более 180 уд.мин сила сокращений снижается. Сердце человека и большинства животных, за исключением крыс в ответ на повышение ритма реагирует увеличением силы сокращений и, наоборот, с уменьшением ритма сила сокращений падает. Механизм этого феномена связан с накоплением или падением в миоплазме концентрации Са2 +, а следовательно - увеличением или уменьшением количества поперечных мостиков. При частом раздражении происходит увеличение ионов кальция в цитозоле, поскольку все больше ионов освобождаются из саркоплазматического ретикулума с каждым последующим мышечным потенциалом действия, а убрать их из саркоплазмы немедленно не удается,т.к. это активный, а значит медленный процесс.

Рис. Возникновение «лестницы Боудича» при увеличении частоты следования импульсов. S - стимулы, одинаковые по силе, но разные по частоте (А - более редкие, Б - более частые). R - ответы (сокращения миокард) (А - одинаковые по амплитуде, Б - возрастающей амплитуды).

При повышении давления в аорте до определенных пределов возрастает противонагрузка на сердце, происходит увеличение силы сердечных сокращений (феномен Анрепа ), обеспечивая тем самым возможность выброса того же объема крови, что и при исходной величине артериального давления, т.е. чем больше противонагрузка, тем больше сила сокращений. Механизмы, лежащие в основе феномена Анрепа, до сих пор не раскрыты. Предполагают, что с увеличением противонагрузки растет концентрация Са2+ в межфибриллярном пространстве и поэтому возрастает сила сердечных сокращений.

·Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто меха­ническую функцию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему веществ, третьи -- нексусы, или тес­ные контакты, проводят возбуждение с клетки на клетку. Нарушение межклеточных взаимодействий приводит к асинхронному возбужде­нию клеток миокарда и появлению сердечных аритмий.

К межклеточным взаимодействиям следует отнести и взаимоот­ношения кардиомиоцитов с соединительнотканными клетками мио­карда. Последние представляют собой не просто механическую опор­ную структуру. Они поставляют для сократительных клеток мио­карда ряд сложных высокомолекулярных продуктов, необходимых для поддержания структуры и функции сократительных клеток. Подобный тип межклеточных взаимодействий получил название креаторных связей (Г. И. Косицкий).

· Внутрисердечные периферические рефлексы .

Более высокий уро­вень внутриорганной регуляции деятельности сердца представлен внутрисердечными нервными механизмами. Обнаружено, что в серд­це возникают так называемые периферические рефлексы, дуга кото­рых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. После гомотрансплантации сердца теплокровных животных и дегене­рации всех нервных элементов экстракардиального происхождения в сердце сохраняется и функционирует внутриорганная нервная систе­ма, организованная по рефлекторному принципу. Эта система вклю­чает афферентные нейроны, дендриты которых образуют рецепторы растяжения на волокнах миокарда и венечных (коронарных) сосудах, вставочные и эфферентные нейроны. Аксоны последних иннервируют миокард и гладкие мышцы коронарных сосудов. Указанные нейроны соединяются между собой синаптическими связями, образуя внутри-сердечные рефлекторные дуги.

В экспериментах показано, что увеличение растяжения миокарда правого предсердия (в естественных условиях оно возникает при увеличении притока крови к сердцу) приводит к усилению сокра­щений миокарда левого желудочка. Таким образом, усиливаются сокращения не только того отдела сердца, миокард которого непос­редственно растягивается притекающей кровью, но и других отделов, чтобы «освободить место» притекающей крови и ускорить выброс ее в артериальную систему. Доказано, что эти реакции осуществ­ляются с помощью внутрисердечных периферических рефлексов (Г. И. Косицкий).

Подобные реакции наблюдаются лишь на фоне низкого исход­ного кровенаполнения сердца и незначительной величины давления крови в устье аорты и коронарных сосудах. Если камеры сердца переполнены кровью и давление в устье аорты и коронарных сосудах высокое, то растяжение венозных приемников в сердце угнетает сократительную активность миокарда, в аорту выбрасы­вается меньшее количество крови, а приток крови из вен затруд­няется. Подобные реакции играют важную роль в регуляции кро­вообращения, обеспечивая стабильность кровенаполнения артери­альной системы.

Гетерометрический и гомеометрический механизмы регуляции силы сокращения миокарда могут привести лишь к резкому уве­личению энергии сердечного сокращения в случае внезапного по­вышения притока крови из вен или повышения артериального давления. Казалось бы, что при этом артериальная система не защищена от губительных для нее внезапных мощных ударов крови. В действительности же таких ударов не возникает благодаря защитной роли, осуществляемой рефлексами внутрисердечной нер­вной системы.

Переполнение камер сердца притекающей кровью (равно как и значительное повышение давления крови в устье аорты, коро­нарных сосудов) вызывает снижение силы сокращений миокарда посредством внутрисердечных периферических рефлексов. Сердце при этом выбрасывает в артерии в момент систолы меньшее, чем в норме, количество содержащейся в желудочках крови. Задержка даже небольшого дополнительного объема крови в камерах сердца повышает диастолическое давление в его полостях, что вызывает снижение притока венозной крови к сердцу. Излишний объем крови, который при внезапном выбросе его в артерии мог бы вызвать пагубные последствия, задерживается в венозной системе.

Опасность для организма представляло бы и уменьшение сер­дечного выброса, что могло бы вызвать критическое падение арте­риального давления. Такую опасность также предупреждают регуляторные реакции внутрисердечной системы.

Недостаточное наполнение кровью камер сердца и коронарного русла вызывает усиление сокращений миокарда посредством внут­рисердечных рефлексов. При этом желудочки в момент систолы выбрасывают в аорту большее, чем в норме, количество содер­жащейся в них крови. Это и предотвращает опасность недоста­точного наполнения кровью артериальной системы. К моменту расслабления желудочки содержат меньшее, чем в норме, коли­чество крови, что способствует усилению притока венозной крови к сердцу.

В естественных условиях внутрисердечная нервная система не является автономной. Она -- лишь низшее звено сложной иерархии нервных механизмов, регулирующих деятельность сердца. Следу­ющим, более высоким звеном этой иерархии являются сигналы, поступающие по блуждающим и симпатическим нервам, осуще­ствляющие процессы экстракардиальной нервной регуляции сердца.

Эффекты воздействий на сердце:

·влияние на ЧСС (т.е. на автоматизм) обозначают термином «хронотропноедействие» (может быть положительным и отрицательным),

·на силу сокращений (т.е. на сократимость) -- «инотропное действие»

·на скорость предсердно- желудочкового проведения (что отражает функциюпроводимости) -- «дромотропное действие» (положительное или отрицательное),

·на возбудимость -- «батмотропное действие» (также положительное илиотрицательное).

В состоянии покоя внутренняя поверхность мембран кардиомиоцитов заряжена отрицательно. Потенциал покоя определяется в основном трансмембранным градиентом концентрации ионов К+ и у большинства кардиомиоцитов (кроме синусового узла и АВ-узла) составляет от минус 80 до минус 90 мВ. При возбуждении в кардиомиоциты входят катионы, и возникает их временная деполяризация - потенциал действия.

Ионные механизмы потенциала действия в рабочих кардиомиоцитах и в клетках синусового узла и АВ-узла разные, поэтому и форма потенциала действия также различается (рис. 230.1).

У потенциала действия кардиомиоцитов системы Гиса-Пуркинье и рабочего миокарда желудочков выделяют пять фаз (рис. 230.2). Фаза быстрой деполяризации (фаза 0) обусловлена входом ионов Na+ по так называемым быстрым натриевым каналам. Затем, после кратковременной фазы ранней быстрой реполяризации (фаза 1), наступает фаза медленной деполяризации, или плато (фаза 2). Она обусловлена одновременным входом ионов Са2+ по медленным кальциевым каналам и выходом ионов К+. Фаза поздней быстрой реполяризации (фаза 3) обусловлена преобладающим выходом ионов К+. Наконец, фаза 4 - это потенциал покоя.

Брадиаритмии могут быть обусловлены либо снижением частоты возникновения потенциалов действия, либо нарушением их проведения.

Способность некоторых клеток сердца к самопроизвольному образованию потенциалов действия называется автоматизмом. Этой способностью обладают клетки синусового узла, проводящей системы предсердий, АВ-узла и системы Гиса-Пуркинье. Автоматизмобусловлен тем, что после окончания потенциала действия (то есть в фазу 4) вместо потенциала покоя наблюдается так называемая спонтанная (медленная) диастолическая деполяризация. Ее причина - вход ионов Na+ и Са2+. Когда в результате спонтанной диастолической деполяризации мембранный потенциал достигает порога, возникает потенциал действия.

Проводимость, то есть скорость и надежность проведения возбуждения, зависит, в частности, от характеристик самого потенциала действия: чем ниже его крутизна и амплитуда (в фазу 0), тем ниже скорость и надежность проведения.

При многих заболеваниях и под действием ряда лекарственных средств скорость деполяризации в фазу 0 уменьшается. Кроме того, проводимость зависит и от пассивных свойств мембран кардиомиоцитов (внутриклеточного и межклеточного сопротивления). Так, скорость проведения возбуждения в продольном направлении (то есть вдоль волокон миокарда) выше, чем в поперечном (анизотропное проведение).

Во время потенциала действия возбудимость кардиомиоцитов резко снижена - вплоть до полнойневозбудимости. Это свойство называется рефрактерностью. В период абсолютной рефрактерности никакой раздражитель не способен возбудить клетку. В период относительнойрефрактерности возбуждение возникает, но только в ответ на надпороговые раздражители; скорость проведения возбуждения снижена. Период относительной рефрактерности продолжается вплоть до полного восстановления возбудимости. Выделяют также эффективный рефрактерный период, при котором возбуждение может возникнуть, но не проводится за пределы клетки.

В кардиомиоцитах системы Гиса-Пуркинье и желудочков возбудимость восстанавливается одновременно с окончанием потенциала действия. Напротив, в АВ-узле возбудимость восстанавливается со значительной задержкой. Сердце: связь между возбуждением и сокращением.

Конец работы -

Эта тема принадлежит разделу:

Роль физиологии в материалистическом понимании сущности жизни. Этапы развития физиологии. Аналитический и системный поход к изучению функций организма

Физиология термин происходит от греческих слов physis природа и logos учение наука т е в широком смысле физиология это наука о природе в.. работы и м сеченова совершили прорыв в объяснении механизмов целенаправленного.. одним из выдающихся представителей мировой физиологии являлся академик и п павлов за исследования в области..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Современные представления о строении и функции мембран. Ионные каналы мембран. Ионные градиенты клетки, механизмы из возникновения
Функции: 1. Барьерная – мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. 2.Регуляторная функция клеточной ме

Мембранный потенциал, теория его происхождения
Мембранный потенциал - это разность потенциалов между наружной и внутренней поверхностями элементарной пограничной мембраны клетки Мембранный потенциал – сила электростатического взаимодей

Потенциал действия, его фазы. Динамика проницаемости мембраны в различные фазы потенциала действия
Под потенциалом действия понимают быстрое колебание потенциала, сопровождающееся, как правило, перезарядкой мембраны. Потенциал действия – это сдвиг мембранного потенциала, возникающий в т

Соотношения фаз изменения возбудимости при возбуждении с фазами потенциала действия
1) местный ответ - физиологический катэлектротон. 2) высоковольтный пик - катодическая депрессия 3) следовая деполяризация - катэлектротон 4) следовая гиперполяризация - анэлектротон Когда

Физические и физиологические свойства мышц. Типы мышечных сокращений. Сила и работа мышц. Закон силы
Свойства скелетных мышц: 1) обеспечивают определенную позу тела человека; 2) перемещают тело в пространстве; 3) перемещают отдельные части тела относительно друг друга;

Одиночное сокращение и его фазы. Тетанус, факторы, влияющие на его величину. Понятие оптимума и пессимума
Раздражение мышечного волокна одиночным пороговым или сверхпороговым стимулом приводит к возникновению одиночного со­кращения. Периоды: Пер­вый - латентный период представляет собой сумму временны

Современная теория мышечного сокращения и расслабления
Теория мышечного сокращения: А. Электрохимическое преобразование: 1. Генерация ПД. 2. Распространение ПД по Т-системе.(по поперечной системе трубочек, которая служит свя

Особенности строения и функционирования гладких мышц
Гладкие мышцы находятся в стенке внутренних органов, крове­носных и лимфатических сосудов, в коже н морфологически отли­чаются от скелетной и сердечной мышц отсутствием видимой по­перечной исчерчен

Законы проведения возбуждения по нервам. Механизм проведения нервного импульса по безмиелиновым и миелиновым нервным волокнам
1) Физиологическая целостность: для проведения возбуждения по нерву необходима не только его анатомическая целостность, но и физиологическая (физиол. Св-ва: возбу-ть, пров-ть, лабильность…)

Физиология среднего мозга, его рефлекторная деятельность и участие в процессах саморегуляции функций
Средний мозг представлен четверохолмием и ножками мозга. Наиболее крупными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а та

Роль среднего и продолговатого мозга в регуляции мышечного тонуса. Децеребрационная регидность и механизм ее возникновения (гамма-регидность)
Продолговатый мозг организует рефлексы поддержания позы. Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное

Статические и статокинетические рефлексы. Саморегуляторные механизмы поддержание равновесия тела
Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы продолговатого мозга обеспечивают перераспределение тонуса мышц тулов

Физиология мозжечка, его влияние на моторные (альфа-регидность) и вегетативные функции организма
Мозжечок - одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

Лимбическая система мозга, ее роль в формировании мотиваций, эмоций, саморегуляции вегетативных функций
Представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения (пищевой, половой, обонятельный инстинкты). К лимбической сист

Таламус, функциональная характеристика и особенности ядерных групп таламуса
Таламус- структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

Роль базальных ядер в формировании мышечного тонуса и сложных двигательных актов
Базальные ядра головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро, скорлупу, ограду, бледный шар.

Структурно-функциональная организация коры больших полушарий, проекционная и ассоциативная зоны. Пластичность функций коры
И.П.Павлов выделял проекционные зоны коры (кор­ковые концы анализаторов отдельных видов чувствительности) и расположен­ные между ними ассоциативные зоны, изучал в мозге процессы торможения и возбуж

Функциональная ассиметрия коры БП, доминантность полушарий и ее роль в реализации высших психических функций (речь, мышление и др.)
Взаимоотношение полушарий большого мозга определяется как функция, обеспечивающая специализацию полушарий, облегчение выполнения регуляторных процессов, повышение надежности управления деятельность

Структурно-функциональные особенности вегетативной нервной системы. Медиаторы вегетативной НС, основные виды рецепторных субстанций
На основании структурно-функциональных свойств автономную нервную систему принято делить на симпатическую, парасимпатическую и метасимпатическую части. Из них первые две имеют центральные структуры

Отделы вегетативной НС, относительный физиологический антагонизм и биологический синергизм их влияний на иннервируемые органы
Делится на симпатическую, парасимпатическую и метасимпатическую. Симпатическая нервная система Функции сипматической нервной системы. Обеспечивает гомеос

Регуляция вегетативных функций (КБП, либмическая система, гипоталамус) организма. Их роль в вегетативном обеспечении целенаправленного поведения
Высшие центры регуляции вегетативных функций находятся в гипоталамусе. Однако, на вегетативные центры влияет КБП. Это влияние опосредуется лимбической системой и центрами гипоталамуса. Рег

Гормоны гипофиза и их участие в регуляции эндокринных органов и функций организма
Гормоны аденогипофиза. Адренокортикотропный гормон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокортикоидов в пучковой зоне коркового ве

Физиология щитовидной и околощитовидных желез. Нейро- гуморальные механизмы регуляций их функций
Основной структурно-функциональной единицей щитовидной железы являются фолликулы. Они представляют собой округлые полости, стенка которых образована одним рядом клеток кубического эпителия. Фоллику

Нарушение функции поджелудочной железы
Уменьшение секреции инсулина приводит к развитию сахарного диабета, основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), поли

Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма
В надпочечниках выделяют корковое и мозговое вещество. Корковое вещество включает клубочковую, пучковую и сетчатую зоны. В клубочковой зоне происходит синтез минералокортикоидов, основным представи

Половые железы. Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов воспроизведения
Мужские половые железы. В мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских половых гормонов - андрогенов. Сперматогенез осуществляется за счет деятельности с

Состав плазмы крови. Осмотическое давление крови ФС, обеспечивающая постоянство осмотическое давления крови
В состав плазмы крови входят вода (90-92%) и сухой остаток (8-10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся: 1) белки плазмы

Белки плазмы крови, их характеристика и функциональное значение. Онкотическое давление в плазме крови
Важнейшей составной частью плазмы являются белки, содержание которых составляет 7-8% от массы плазмы. Белки плазмы - альбумины, глобулины и фибриноген. К альбуминам относятся белки с относительно м

PH крови, физиологические механизмы, поддерживающие постоянство кислотно-основного равновесия
В норме рН крови соответствует 7,36,. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а венозной - 7,34. В клетках и тканях рН дости

Эритроциты, их функции. Методы подсчета. Виды гемоглобина, его соединения, их физиологическое значение. Гемолиз
Эритроциты- это высокоспециализированные безъядерные клетки крови. Функции эритроцитов:1. Перенос кислорода от легких к тканям.2. Участие в транспорте СО2 от тканей к легким.3. Транспорт воды от тк

Регуляция эритро и лейкопоэза
Для нормальногоэритропоэза необходимо железо. Последнее поступает в костный мозг при разрушении эритроцитов, из депо, а также с пищей и водой. Взрослому человеку для нормального эритропоэза требует

Понятие о гемостазе. Процесс свертывания крови и его фазы. Факторы ускоряющие и замедляющие свертывание крови
Гомеостаз- сложная совокупность процессов, которая обеспечивает жидкое, текучее состояние крови, а также предупреждает и остановку кровотечений путем поддержания структурной целостности стенок сосу

Сосудисто-тромбоцитарный гемостаз
Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба. Условно его разделяют на три стадии: 1) временный (первичный) спазм сосудов; 2) образован

Понятие о группах крови.системы АВО и резус фактора. Определение группы крови. Правила переливание крови
Учение о группах крови возникло в связи с проблемой переливания крови. В 1901 г. К. Ландштейнер обнаружил в зритроцитах людей агглютиногены А и В. В плазме крови находятся агглютинины a и b (гамма-

Лимфа, ее состав, функции. Несосудистые жидкие среды,их роль в организме. Обмен воды между кровью и тканями
Лимфа образуется путем фильтрации тканевой жидкости через стенку лимфатических капилляров. В лимфатической системе циркулирует около 2 литров лимфы. Из капилляров она движется по лимфатическим сосу

Лейкоциты и их виды. Методы подсчета. Лейкоцитарная формула. Функции лейкоцитов
Лейкоциты, или белые кровяные тельца, представляют собой образования различной формы и величины. По строению лейкоциты делят на две большие группы: зернистые, или гранулоциты, и незернистые, или аг

Тромбоциты,колличество и функции в организме
Тромбоциты, или кровяные пластинки, образуются из гигантских клеток красного костного мозга - мегакариоцитов. В норме число тромбоцитов у здорового человека составляет 2-4-1011 /л, или 200

Сердце, значение его камер и клапанного аппарата. Кардиоцикл и его структура
Изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла. Сердце это полый мышечный орган.Образован 4мя камерами (2 предсердия и 2 желудочка). Масса сердца

Автоматия
Автоматия сердца – это способность отдельных клеток миокарда возбуждаться без внешней причины, в связи с процессами, протекаю-щими в них самих. Свойством автоматии обладает проводящая система сердц

Соотношение возбуждения, возбудимости и сокращения кардиомиоцита в различные фазы кардиоцикла. Экстрасистолы
Особенности возбудимости и сократимости миокарда. Из материалов прошлого семестра вы помните, что возбудимость это способность возбудимой ткани под действием раздражителя переходить из сос

Внутрисердечные и внесердечные факторы, участвующие в регуляции деятельности сердца, их физиологические механизмы
Нервная регуляция осуществляется импульсами поступающими к сердцу из ЦНС по блуждающим и симпатическим нервам. Сердечные нервы образованы двумя нейронами.Тела первых, отростки которых сост

Фонокардиография. Фонокардиограмма
Сердце во время систолыжелудочков совершает вращательные движения поворачиваясь слева на право.Верхушка сердца поднимается и надавливает на гр клетку в облати пятого межреберного промежутка.Его мжн

Основные законы гемодинамики. Линейная и объемная скорость кровотока в различных отделах системы кровообращения
Основные закономерности движения жидкости по трубам описаны разделом физики - гидродинамикой. Согласно законам гидродинамики, движение жидкости по трубам зависит от разности давлени

Анализ сфигмограммы и флебограммы
Артериальный пульс это ритмические колебания стенк артерии, обусловленные повышением давления в период систолы. Пульсовая волна в аорте в момент изгнания крови из желудочков.Давление в ао

Физиологические особенности кровообращения в миокарде, почках, легких, мозге
Мозга с помощью 2 сонных и 2 позвоночных атерий, которые образуют артериальный круг большого мозга от него отходят артериальные ветви питающие мозговую ткань.При усиленной работе коры больших полуш

Физиологические механизмы регуляции тонуса сосудов
Базальный тонус -В отсутствии всяких регуляторных воздействий изолированная артериола лишенная эндотелия сохраняет некоторый тонус зависящий от самих гладких мышц. Собственные с с

Капилярный кровоток и ег особенности. Микроциркуляция
Это маленькие сосуды.Они обеспечивают ранскапиллярный обмен, т е снабжают клетку питательными и пластическими веществами и удаляют продукты метаболизма.Кровяное давление зависит от сопротивления в

Кровавые и бескровные методы определения кровяного давления
Для регистрации давления крови кровавым методом используется ртутный манометр Людвига, состоящий из У-образной стеклянной трубочки, заполненной ртутью и шкалы с нанесенными на нее делениями. Один к

Сопоставление ЭКГ и ФКГ
Одновременно записывают ФКГ или ЭКГ для сопоставления электрокимограммы с фазами сердечных сокращений. Систола желудочка регистрируется в виде нисходящего колона (между I и II тоном ФКГ), а диастол

Методы определения легочных объемов и емкостей. Спирометрия, спирография, пневмотахометрия
Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объемов и емкостей

Дыхательный центр. Современное представление и его структуре и локализации. Автономия дыхательного центра
Современные представления о строении ДЦ.Лумсдан (1923 г.) доказал, что в области продолговатого мозга расположен инспираторный и экспираторный отделы ДЦ, а в области варолиевого моста - центр регул

Саморегуляция дыхательного цикла,механизмы смены дыхательных фаз. Рольпереферических и центральных механизмов
Дыхательный цикл подразделяют на фазу вдоха и фазу выдоха относительно движения воздуха из атмосферы в сторону альвеол (вдох) и обратно (выдох). Двум фазам внешнего дыхания соответствуют три фазы а

Гуморальные влияния на дыхание, роль углекислоты и рН урови. Механизм первого вдоха новорожденного. Понятие о дыхательных аналептиках
Гуморальные влияния на дыхательный центр. Большое влияние на состояние дыхательного центра оказывает химический состав крови, в частности ее газовый состав. Накопление углекислого газа в крови вызы

Дыхание в условиях пониженного и повышенного барометрического давления и при изменении газовой среды
В условиях пониженного давления. Первоначальная гипоксическая стимуляция дыхания, возникающая при подъеме на высоту, приводит к вымыванию из крови СО2 и развитию дыхательного алкал

ФС обеспечивающая постоянтво газового состава крови. Анализ ее центральной и периферических компонентов
В функциональной системе, поддерживающей оптимальный уровень газового состава крови, одновременно осуществляется взаимодействие рН,Рсо2 и Р о2. Изменение одного из этих параметров немедленно привод

Физиологические основы голода и насыщения
Потребление пищи организмом происходит в соответствии с интенсивностью пищевой потребности, которая определяется его энергетическими и пластическими затратами. Такая регуляция потребления пищи назы

Принципы регуляции деятельности пищеварительной системы. Роль рефлекторных, гуморальных и местных механизмов регуляции. Гормоны ЖКТ
Натощак пищеварительный тракт находится в состоянии относительного покоя, для которого характерна периодическая функциональная активность. Прием пищи оказывает рефлекторное пусковое влияние на про

Глотание его фазы саморегуляция этого акта. Функциональные особенности пищевода
Глотание возникает в результате раздражения чувствительных нервных окончаний тройничного, гортанных и языкоглоточного нервов. По афферентным волокнам этих нервов импульсы поступают в продолговатый

Пищеварение в желудке. Состав и свойства желудочного сока. Регуляция желудочной секреции. Фазы отделения желудочного сока
Пищеварительными функциями желудка являются депонирование, механическая и химическая обработка пищи и постепенная порционная эвакуация содержимого желудка в кишечник. Пища, находясь в течение неско

Полостное и пристеночное пищеварение в тонкой кишке
Полостное пищеварение в тонкой кишке осущест­вляется за счет пищеварительных секретов и их ферментов, по­ступивших в полость тонкой кишки (секрет поджелудочной желе­зы, желчь, кишечный сок).

Моторная функция тонкой кишки
Моторика тонкой кишки обеспечивает перемешивание ее со­держимого (химуса) с пищеварительными секретами, продвиже­ние химуса по кишке, смену его слоя у слизистой оболочки, повы­шение внутрикишечного

Особенности пищеварения в толстой кишке, моторика толстой кишки
Весь процесс пищеварения у взрослого человека длится 1- 3 сут. Ее моторика обеспечивает резервуарную функцию - накопление содержимого, всасывание из него ряда веществ, в основном воды, продвижение

ФС, обеспечивающие постоянство пита. Вещ в крови. Анализ центральных и периферических компонентов
Рассмотрим 4 звена функциональной системы, поддерживающей уровень питательных веществ в крови. Полезный приспособительный результат - поддержание определенного уровня питательных веществ в

Понятие об обмене веществ в организме. Процессы ассимиляции и диссимиляции. Пластическая энергетическая роль питательных веществ
обмен веществ - набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структур

Основной обмен, его значение для клиники. Условия измереняи основного обмена. Факторы, влияющие на величину основного обмена
Для определения присущего данному организму уровня окислительных процессов и энергетических затрат проводят исследование в определенных стандартных условиях. При этом стремятся исключить влияние фа

Энергитический баланс организма. Рабочий обмен. Энергетические затраты организма при разных видах труда
ЭНЕРГЕТИЧЕСКИЙ БАЛАНС - разница между количеством энергии, поступающей с пищей, и энергии, расходуемой организмом. Рабочий обмен - это за

Физиологические нормы питания в зависимости от возраста, вида труда и состояния организма. Принципы составленяи пищевых рационов
Питание - процесс поступления, переваривания, всасывания и усвоения в организме пищевых веществ (нутриентов), необходимых для покрытия пластических и энергетических нужд организма, образования его


Теплопродукция - (теплообразование) , образование тепла в организме в процессе его жизнедеятельности. У человека происходит главным образом в результате окислительных процессов, свя

Теплоотдача. Способы отдачи тепла с поверхности тела. Физиологические механизмы теплоотдачи и их регуляция
Теплопроводность осуществляется при непосредственном контакте тела с предметами (стул, кровать и т.д.). При этом скорость передачи тепла от более нагретого тела к менее нагретому предмету определяе

Система выделения, ее основные органы и их участие в поддержании важнейших констант внутренней среды организма
Процесс выделения имеет важнейшее значение для гомеостаза, он обеспечивает освобождение организма от продуктов обмена, которые уже не могут быть использованы, чужеродных и токсических веществ, а т

Образование конечной мочи, ее состав. реабсорбция в канальцах, механизмы ее регуляции. Процессы секреции и экскреции в почечных канальцах
В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0-1,5 л мочи, остальная жидкость всасывается в канальцах. 0,5-1 г мочевой кислоты, 0,4-1,2 г азота, входящ

Регуляция деятельности почек. Роль нервных и гуморальных факторов
Почка служит исполнительным органом в цепи различных рефлексов, обеспечивающих постоянство состава и объема жидкостей внутренней среды. В ЦНС поступает информация о состоянии внутренней среды, прои

Методы оценки величины фильтрации, реабсорбции и секреции почек. Понятие о коэффициенте очищения
При исследовании функции почек человека и животных используют метод «очищения» (клиренса): сопоставление концентрации определенных веществ в крови и моче позволяет рассчитать величины основных проц

Учение Павлова об анализаторах. Понятие о сенсорных системах
Сенсорной системой (анализатором, по И. П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, получающих стимулы из внешней или внутренней среды,

Проводниковыйй отдел анализаторов. Роль и участие переключающих ядер и ретикулярной формации в проведении и переработке афферентных возбуждений
Проводниковый отдел сенсорной системы включает афферентные (периферические) и промежуточные нейроны стволовых и подкорковых структур центральной нервной системы (ЦНС), которые составляют как бы цеп

Корковый отдел анализаторов. Процессы высшего коркового анализа афферентных возбуждений. Взаимодействие анализаторов
Центральный, или корковый, отдел сенсорной системы, согласно И.П.Павлову, состоит из двух частей: центральной части, т.е. «ядра», представленной специфическими нейронами, перерабатывающими афферент

Адаптация анализатора, ееперефирические и центральные механизмы
Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сен сорная адаптация - общее свойство сенсорных систем, заключающееся в приспособлен

Характеристика зрительного анализатора. Рецепторныйаппарат. Фотохимические процессы в сетчатке при действие света. Восприятие света
Зрительный анализатор. Периферический отдел зрительного анализатора - фоторецепторы, расположенные на сетчатой оболочке глаза. Нервные импульсы по зрительному нерву (проводниковый отдел) поступают

Современное представления о восприятие света.Методы изучения функции зрительного анатизатора. Основные формы нарушения цветового зрения
Для исследования остроты зрения пользуются таблицами, состоящими из рядов черных букв знаков или рисунков определенной величины, расположенных нисходящими рядами. Нарушения цветоощущения о

Теория восприятия звука. Методыузучения слухового анализтора
Теории слуха принято делить на две категории: 1) теории периферического анализатора и 2) теории центрального анализатора. Исходя из строения периферического слухового аппарата, Гельмгольц

Понятие об антиболевой (антиноцицептивной)системе. Нейрохимические механизмы антиноцицепции, рольэндорфинов и экзорфинов
Антиноцицептивная система – это иерархическая совокупность нервных структур на разных уровнях ЦНС, с собственными нейрохимическими механизмами, способная тормозить деятельность болевой (ноцицептивн

Правила выработки условных рефлексов
Для выработки условного рефлекса необходимо: 1. наличие двух раздражителей, один из которых безусловный (пища, болевой раздражитель и др.), вызывающий безусловно-рефлекторную реакцию, а др

Динамические нарушения высшей нервной деятельности. Эксперементальные неврозы и их значение для психосоматической медицины
Под невротическими заболеваниями понимают в настоящее время психогенно возникающие, обычно обратимые (функциональные) динамические нарушения высшей нервной деятельности, протекающие относительно бл

Сон, как особое состояние организма, виды и фазы сна, их характеристика. Теории о возникновении и механизмах развития сна
Сон - жизненно необходимое периодически наступающее особое функциональное состояние, характеризующееся специфическими электрофизиологическими, соматическими и вегетативными проявлениями. Периодичес

Учение И.П. Павлова о 1-ой и 2-ой сигнальных системах действительности. Функциональная ассиметрия коры полушарий головного мозга. Речь, ее функции
Оно обусловлено появлением второй сигнальной системы - возникновением и развитием речи, суть которой заключается в том, что во второй сигнальной системе человека сигналы приобретают новое свойство

Роль социальных и биологических мотиваций в формировании целенаправленной деятельности человека. Физиологические основы трудовой деятельности
Мотивации и эмоции тесно связаны с возникновением и удовлетворением потребностей организма - необходимым условием его жизнедеятельности. Мотивации (побуждения, влечения, драйвы) определяются генети

Особенности умственного труда. Нервные, вегетативные и эндокринные изменения при умственном труде. Роль эмоций в процессе умственной деятельности
Умственный труд состоит в переработке ЦНС различных видов информации в соответствии с социальной и профессиональной направленностью индивидуума. В процессе переработки информации происходят сличени

Развитие утомления в процессе физического или умственного труда. Особенности двигательного и умственного утомления
Продолжительный умственный труд снижает функциональную активность коры больших полушарий. Уменьшаются амплитуда и частота основных ритмов ЭЭГ. Развивающееся утомление носит центральный характер и о

Понятие активного отдыха, его механизмы
Исследования И.М. Сеченова позволили внести в физиологию трудовой деятельности понятие «активного отдыха». Суть его заключается в том, что при наступлении утомления восстановление работоспособности

Иммунитет, его виды и характеристика.Иммунокомпонентные клетки, их кооперация в иммунном ответе
Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и фун

Морфофункциональные особенности развития и полового созревания женского организма

Морфофункциональные особенности развития и полового созревания мужского организма
Половым созреванием называется процесс развития организма от рождения до детородного возраста. Половое созревание у человека происходит постепенно, по мере становления гормональной функции

Структурные и физиологические изменения в организме беременной женщины
Беременность. Оплодотворение яйцеклетки обычно совершается в маточной (фаллопиевой) трубе. Как только в яйцеклетку проникает один сперматозоид, образуется оболочка, преграждающая доступ другим спер