Загляните в словарь иностранных слов: «импульс» – от лат. impulsus – толчок, удар, побуждение». Эффект, производимый ударом, всегда вызывал удивление у человека. Почему тяжелый молот, положенный на кусок металла на наковальне, только прижимает его к опоре, а тот же молот ударом молотобойца плющит металл? А в чем секрет старого циркового трюка, когда сокрушительный удар молота по массивной наковальне не наносит никакого вреда человеку, на груди которого установлена эта наковальня? В чем ошибка в вопросе, который задал однажды один ученик: «Какова сила удара при падении груза массой 20 кг с высоты 10 м?» И что значит само выражение «сила удара»?

Еще Галилей интересовался проблемой «удивительной силы удара». Он описывает остроумный опыт, при помощи которого он пытался определить «силу удара». Опыт состоял в следующем: к прочному брусу, укрепленному горизонтально на оси подобно коромыслу весов (рис. 39), подвешены с одного конца два ведра, а с другого – груз (камень), уравновешивающий их. Верхнее ведро было наполнено водой, в дне этого ведра было проделано отверстие, закрытое пробкой.

Если вынуть пробку, то вода будет выливаться в нижнее ведро и сила удара струи о дно этого ведра, казалось бы, заставит правую часть коромысла опуститься. Добавка соответствующего груза слева восстановит равновесие, а его масса позволит оценить, какова сила удара струи.

Однако, к удивлению Галилея, опыт показал совершенно иное. Сначала, как только была вынута пробка и вода начала выливаться, опустилась не правая, а левая часть коромысла. И лишь когда струя достигла дна нижнего ведра, равновесие восстановилось и уже больше не нарушалось до конца опыта.

Как же объяснить этот «странный» результат? Разве ошибочно первое предположение Галилея о том, что струя, ударяя о дно нижнего ведра, заставит его опускаться? Для понимания этого довольно сложного вопроса надо знать закон сохранения количества движения, который вместе с законом сохранения энергии относится к величайшим законам природы.

Термин «количество движения» был введен современником Галилея – французским философом и математиком Декартом, но введен далеко не на научном основании, а из метафизических (не основанных на опыте) религиозных идей философа. Неопределенный, туманный термин «количество движения» заменяют сейчас термином «импульс».

В предыдущей беседе мы приводили формулировку второго закона Ньютона в том виде, какой ему дал сам Ньютон: «Изменение количества движения пропорционально движущей силе и происходит по направлению той прямой, по которой эта сила действует».

Ньютон первый ввел в механику понятие массы и, пользуясь им, дал точное определение количества движения как произведения массы тела на его скорость (mv).

Если начальная скорость v 0 тела массой m под действием какой-либо силы в течение времени t увеличивается до v 1 , то изменение количества движения за единицу времени будет:

Это изменение пропорционально приложенной силе F:

mv 1 – mv 0 = Ft

Это и есть второй закон Ньютона. Из него следует, что одно и то же изменение количества движения может произойти и при продолжительном действии малой силы, и при кратковременном действии большой силы. Произведение Ft можно рассматривать как меру действия силы. Оно получило название импульс силы. Не смешивайте только импульс силы с самой силой, а также с импульсом. Из приведенной формулы видно, что импульс силы равен не самому количеству движения, а изменению количества движения. Иными словами, импульс силы за время t равен изменению импульса тела за это время. Импульс обозначают обычно буквой p:

В общем случае надо учитывать, что импульс является векторной физической величиной:

Выше мы уже упоминали о двух величайших законах природы: законе сохранения импульса и законе сохранения энергии. Эти законы удобно продемонстрировать на примере удара. Явление удара имеет огромное значение в науке и технике. Рассмотрим это явление внимательнее.

Мы различаем материалы упругие и неупругие. Например, резиновый мячик упругий; это значит, что после прекращения действия деформирующей силы (сжатия или растяжения) он вновь возвращается к первоначальной форме. Наоборот, кусок глины, смятый рукой, к первоначальной форме не возвращается. Резина, сталь, мрамор, кость относятся к упругим материалам. Вы легко убедитесь в упругости стального шарика, уронив его с некоторой высоты на упругую же опору. Если шарик был предварительно закопчен, то на опоре останется след не в виде точки, а в виде достаточно различимого пятнышка, так как при ударе шарик смялся, хотя затем, отскочив, восстановил свою форму. Деформируется и опора. Возникающая при этом упругая сила действует со стороны опоры на шарик и постепенно уменьшает его скорость, сообщая ему ускорение, направленное вверх. При этом направление скорости шарика меняется на противоположное и он взлетает над опорой на ту же высоту, с какой упал (идеальный случай при идеальной упругости соударяющихся тел). Сама опора, как связанная с имеющей огромную массу Землей, практически остается неподвижной.

Последовательные изменения формы шарика и поверхности опоры для разных моментов времени показаны на рисунке 40. Шарик падает с высоты h и в момент приземления (положение на рисунке) имеет скорость , направленную вертикально вниз. В положении B деформация шарика максимальна; в этот момент его скорость равна нулю, а сила F, действующая на шарик со стороны плоскости опоры, максимальна: F = F max . Затем сила F начинает уменьшаться, а скорость шарика расти; точка C соответствует моменту, когда значение скорости . В отличие от состояния A теперь скорость направлена вертикально вверх, вследствие чего шарик взлетает (подскакивает) на высоту h.

Предположим, что упругий шарик, движущийся с некоторой скоростью, сталкивается с неподвижным шариком такой же массы. Действие неподвижного шарика сводится опять к уменьшению скорости первого шарика и остановке его. В то же время первый шарик, действуя на второй, сообщает ему ускорение и увеличивает его скорость до своей первоначальной скорости. Описывая это явление, говорят, что первый шарик передал второму свой импульс. Вы легко можете проверить это на опыте двумя шариками, подвешенными на нитях (рис. 41). Измерить скорость, с которой движутся шарики, конечно, трудно. Но можно воспользоваться известным положением, что скорость, приобретаемая падающим телом, зависит от высоты падения (). Если не считать небольших потерь энергии вследствие неполной упругости шаров, то шар 2 взлетит от соударения с шаром 1 на такую же высоту, с какой упал шар 1. При том шар 1 остановится. Сумма импульсов обоих шаров остается, таким образом, все время постоянной.


Можно доказать, что закон сохранения импульса соблюдается при взаимодействии многих тел. Если на систему тел не действуют внешние тела, то взаимодействие тел внутри такой замкнутой системы не может изменить ее полного импульса. Вы теперь можете «на научной основе» опровергнуть хвастливые россказни барона Мюнхгаузена, уверявшего, что ему удалось вытащить себя из болота за свои собственные волосы.

Возвращаясь к знаменитому опыту Галилея, с которого мы начали нашу беседу, мы теперь не будем удивляться результату опыта: в отсутствие внешних сил импульс всей системы не мог измениться и потому брус оставался в равновесии, несмотря на удар струи о дно второго ведра. Подробный математический анализ опыта довольно сложен: надо подсчитать уменьшение массы верхнего ведра, из которого выливается струя воды, реакцию вытекающей струи и, наконец, импульс, сообщаемый дну нижнего ведра ударом струи. Подсчет показывает, что сумма всех импульсов с учетом их знаков равна нулю, как было до вытаскивания пробки, и вся система – брус, ведра, противовес – остается в равновесии.

Закон сохранения импульса и закон сохранения энергии являются основными законами природы. Заметим, однако, что сохранение импульса в механических процессах справедливо всегда и безусловно, в то время как при применении закона сохранения энергии в механике надо быть осторожным (справедливость его требует соблюдения некоторого условия). «Не может быть! – возмущенно воскликнете вы, – закон сохранения энергии справедлив всегда и везде!» А я и не спорю, по читайте дальше. Рассмотрим пример столкновения упругих и неупругих шаров.

Упругий удар . Пусть шар массой 2 кг движется со скоростью 10 м/с к ударяет по второму (неподвижному) шару такой же массы. Как мы уже знаем, после удара первый шар остановится, а второй будет двигаться со скоростью первого шара до столкновения.

Проверим закон сохранения импульса:

Закон сохранения энергии:

Оба закона соблюдены.

Неупругий удар (шары из мягкой глины или замазки). После удара слипшиеся шары продолжают двигаться вместе, но со скоростью, вдвое меньшей скорости первого шара до удара.

Закон сохранения импульса:

Закон соблюдается.

Закон сохранения энергии:

До удара энергия была равна 100 Дж, а после удара 50 Дж! Куда же девалась половина энергии? Вы, наверное, догадались: механическая энергия, равная 50 Дж, превратилась во внутреннюю энергию: после удара молекулы стали двигаться более оживленно – шары нагрелись. Если бы мы могли учесть все виды энергии до и после удара, то убедились бы, что и в случае неупругого удара закон сохранения энергии не нарушается. Закон сохранения энергии справедлив всегда, но надо учитывать возможность превращения энергии из одного вида в другой. В практических случаях применения законов сохранения энергии и импульса это особенно важно. Рассмотрим несколько примеров применения этих законов.

Поковка изделий в кузнечном цехе. Цель поковки – изменить форму изделия при помощи ударов молота. Для наилучшего использования кинетической энергии падающего молота необходимо класть изделие на наковальню большой массы. Такая наковальня получит ничтожно малую скорость, и большая часть энергии при ударе превратится в энергию деформации (форма изделия изменится).

Забивка свай. В этом случае желательно передать большую часть кинетической энергии свае, чтобы она могла совершить работу по преодолению сопротивления грунта и углубиться в грунт. Масса копровой бабы, т. е. груза, который падает на сваю, должна быть больше массы сваи. В соответствии с законом сохранена импульса скорость сваи в этом случае будет больше и свая глубже уйдет в грунт.

О силе удара. В задаче, поставленной в начале нашей беседы, не указана продолжительность удара, а последняя зависит т природы опоры. При жесткой опоре продолжительность удара будет меньше, а средняя сила удара больше; при мягкой опоре наоборот. Сетка, протянутая под трапецией в цирке, предохраняет воздушного гимнаста от сильного удара при падении. Футболист, принимая удар мяча, должен подаваться назад, тем самым увеличивая продолжительность удара, – это смягчит удар. Таких примеров можно привести много. В заключение осмотрим еще одну интересную задачу, которая после всего вышесказанного будет понятна вам.

«Две лодки движутся по инерции в спокойной воде озера навстречу друг другу параллельным курсом со скоростью v 1 = 6 м/с. Когда они поравнялись, то с первой лодки на вторую быстро переложили груз. После этого вторая лодка продолжала двигаться в прежнем направлении, но со скоростью v 2 = 4 м/с.

Определить массу M 2 второй лодки, если масса M 1 первой без груза равна 500 кг, а масса m груза 60 кг. Подсчитать запас энергии лодок и груза до и после перекладывания груза. Объяснить, почему изменился этот запас энергии».

Решение. До встречи импульс первой лодки равен: (M 1 + m)v 1 , а импульс второй лодки: M 2 v 1 .

При перекладывании груза из первой лодки во вторую скорость первой лодки не изменяется, так как она испытывает толчок в боковом направлении (отдача), который не может преодолеть сопротивление воды. Скорость же второй лодки меняется, так как переложенный груз должен резко изменить направление своей скорости на противоположное, что можно рассматривать как толчок.

Применяя закон сохранения импульса, пишем:


Энергия уменьшилась на 3500 Дж. Куда же девалась энергия? Потерянная часть механической энергии превратилась во внутреннюю энергию (в теплоту) при выравнивании скоростей груза и второй лодки.

Пульс - здоровье, продолжительность жизни, старение и бессмертие.

Пульс (pulse) это толчки в кровеносных сосудах от ударов нашего сердца, а размер и характер работы, от них, как от главного маятника зависит вся наша жизнь, определяют продолжительность жизни, здоровье, старение и бессмертие. Частота пульса и размер сердца, дают скорость жизни, ее продолжительность и старение. Сердце живых организмов, совершенные и точные механизмы времени и измерители скорости жизни. Уникальные точность, возможности сердца люди, тысячи лет, пытались воспроизвести в виде водяных, песочных или механических часов. Информация закодированная и встроенная в гены, хромосомы, организмы и популяции, от интенсивности и уровня работы, которых зависят процветание, продолжительность жизни и срок их службы.

З ависимость характера пульса и работы сердца от импульса, раздражителя или условий, легли в основу пульсовой диагностики, определения и управления состоянием организма, спортивных переспектив, репродуктивных свойств, глубины тонуса и возможной продолжительности жизни.

Нормальный пульс здорового человека должен быть 65-75 уд. в мин., его уровень для среднего веса, не должно меняться, темп старения и продолжительность жизни в 25 и 100 лет, зависят от оптимального и гармоничного пульса. Частота пульса человека в покое, бывает от 30 до 200 уд. в мин. и более , меняет масса, возраст, время суток, тренированность, привычки и образ жизни. Частоту биения и размер сердца, меняют болезни человека и организма, пониженный пульс при брадикардии, увеличивает сердце, а повышенный пульс при тахикардии, уменьшает размер.

Частота пульса и характер показывают, количество здоровья, физическое состояние и размер - это сила, скорость, выносливость и весо - ростовые особенности организма. Птицы и животные в домашних условиях, живут гараздо больше, чем их вольные собратья на природе, иногда эта разница отличается в разы, меняются и снижаются их уровень обмена и растет их размер.

Пульс калибри в полете к примеру составляет 1 200 ударов в минуту, в покое 500 ударов, а в оцепинении всего 50 ударов. А пульс крокодила в норме сотавляет 25-40 ударов в минуту, а в состоянии оцепенения 1-5 ударов в зависимости от массы. Калибри живут 1 - 2 года, некоторые виды до 9 лет, крокодилы 5 - 8 лет, некоторые виды могут прожить до 100 лет, а киты живут 30 - 50 лет, некоторые виды китов до 200 лет и более.

Биохимия организма и работа органов меняется уже через секунды после воздействия, а пульс изменяет свою работу через доли секунд, меняя пропорции веществ и здоровье, приоритеты и характер адаптации, уровень старения и будущую продолжительность жизни или бессмертия.

За счет изменения так называемой вариабельности, разные виды могут снижать энергетические траты, при смене внешних условий и среды, показав рекорды выносливости и скорости, в борьбе за выживание. Крокодил может обходиться без пищи год и более, а детеныши антилопы и газели состязаются в скорости с гепардом уже через несколько дней и даже часв, после рождения.

Человек конечно не мог обходится без пищи месяцы и тем более год, как крокодил, но реакция и адаптация, тоже могут менятся в широких пределах, как и колебания пульса при этом. Так при охлаждении пульс замедляется, а при выполнении работы или болезни резко возрастает. Чем сильнее эти колебания тем обычно выше глубина тонуса организма и уровень обмена.

Продолжительность жизни зависит от генов конкретного организма, пульса и уровеня обмена. Чем больше масса вида организма тем выше продолжительность жизни, замечено, чем ниже естественная температура организма, тем она выше. Достаточно снизить температуру ниже на полтора - два градуса, от естественной температуры в 36,6 градусов, человеку с оптимальной массой, это снизит старение и увеличит продолжительность жизни на десятки лет и более. Стоит оговориться, каждый вид имеет свою оптимальную массу. Для людей в зависимости от пола и роста, это от 55 до 85 килограмм, выход за эти пределы сокращает продолжительность жизни.

Обьективно любое превышение за 60 килограмм это уже недостаток, а разница средней массы, что зависит от пола, не должна превышать 20 - 25 кг. Замечено, люди чей вес и рост ниже, у них меньше фон болезней нервов, рака, диабета и так далее, что связано с лучшей работой имунной системы и более высоким качеством тканей и уровнем регенерации, что падают с ростом массы.

Высокая продолжительность жизни человека в среднем на уровне 70 - 80 лет, а в иных случаях до 100 лет и более. Медленный темп старения в сравнении с животными - плата за утрату уровня обмена. Следствие, мы болеем болезнями, многих из которых нет в животном мире и должны мириться с большим сроком восстановления функций органов и организма после болезней, травм и работы. Пример, некоторые насекомые за полчаса восстановят повреждения несовместимые с жизнью, а сорванный цветок растения может пройти полный цикл до образования полноценных семян, чего не дано человеку. Человек вынужден ухаживать за своими детьми до 18-20 и более лет до их полной приспособленности к самостоятельной жизни, это тот срок к которому все основные виды животных уже заканчивают свой жизненный цикл.

Надо понимать, что основные регуляторы находятся в нашем мозге, это маленькие отделы - тимус, эпифиз и наиболее важный гипоталамус, от работы которых, зависят все наши функции в том числе и пульс. Это органы от работы которых, зависят выработка гормонов молодости и жизни, особенно важный из них гонадотропный гормон, известный как гормон роста. Эпифиз вырабатывает мелатонин и серотонин. Мелотонин задает режим сна, отдыха и продолжительность жизни, а серотонин отвечает за физический рост и хорошее настроение. Чем больше гормонов на единицу массы, тем выше уровень здоровья, а падение их величин, ведут к болезни, ухудшая управление органами и тканями. Это обычная ситуация, возникновения и развития рака, снижение качества тканей, когда здоровье организма измеряют наиболее слабым или худшим органом.

Известно, при выработке гормонов , во время сна темперутура тела человека падает, а частота пульса в стадии быстрого сна растет, можно делать вывод - продолжительность жизни зависит от количества и качества сна. Увеличив длительность и качество сна, можно управлять, выработкой гормонов, ростом продолжительности жизни и другими процессами и функциями организма.

В природе животные впадают в оцепенение и длительный сон, найдя полную безопастность, стабильные и комфортные условия, глубоко в земле или на потолке пещер и вдали от действия солнца. В крайнем случае за счет тени высоко на дереве, обеспечивая организму предельную расслабленность и прототип необходимой биохимии, снижая пульс. Получается, самые плохие условия внешней среды, животные превращают, в самое большое преимущество, то есть в выработку гармонов, переходя в оцепенение или длительный сон и утрачивая массу.

Самое интересное, иногда люди в некоторых ситуациях тоже впадают в длительный сон и даже в оцепенение переставая стариться, известны многочисленные случаи литаргического сна и даже случай оцепенения. Хамба лама вошел в это состояние в 1927 году, по завещанию которого в 2002 году его вытащили из могилы, когда ему было 160 лет и он дышал, седце билось с частотой 2 удара в минуту, а биологический возраст по оценкам ученых составлял 75 лет. Сейчас он скорее всего умер, из-за того, что некому помочь вывести его из анабиоза, так как в силу разных причин не осталось в живых никого из его учеников и последователей.

Придавая и нашему организму расслабленность, комфорт и идеальную биохимию, стимулируя выработку или вводя готовые гормоны, можно получить увеличение продолжительности жизни, меняя пульс в соответствии с внешним воздействием в фазе и интересах организма, воспроизведя по существу средство макропулоса.

Ученые заметили, что высокий IQ - уровень интеллекта залог высокой продолжительности жизни, так обладатели IQ - 85 доживают до 80 лет, а с IQ - 115 живут более 100 лет, объясняют это более высокой стрессоустойчивостью людей с более высоким интеллектом. Но скорее всего сам высокий IQ и высокая продолжительность жизни связаны между собой особенностью генетики, типом биохимии и характеристиками сердца и пульса.

Статистика показывает то, что именно нервные и перевозбужденные люди часто болеют и сокращают жизнь из за истощения резервов самых ценных компонентов организма. Для популяции важна благоприятность внешней среды, чем тяжелее внешние условия, тем короче период между поколениями. Так с появлением комфортных условий средняя продолжительность жизни людей выросла в три раза.

Замечена четкая зависимость между работоспособностью, продуктивностью, репродукцией с одной стороны и продолжительностью жизни с другой. Чем выше любой компонент первой части и чем выше пульс или меньше масса тела, тем ниже продолжительность жизни. Особое место занимает в продолжительности жизни репродуктивность, может быть поэтому боги, которые в мифах жили вечно, но не могли иметь детей.

Необходимо обратить внимание на то, что каждый вид живого организма в том числе и нашего имеет свои оптимальные значения пульса и массы, выход за педелы которых вызывает различные болезни и сокращение продолжительности жизни. Не для кого не секрет, что люди чей рост выше 195 сантиметров, живут 30 - 50 лет то есть значительно меньше тех у кого рост меньше 180 сантиметров, которые живут 60 - 100 лет, а иногда и более.

Одно из самых сокровенных желаний любого человека жить вечно, в связи с этими устремлениями великие умы, опыпные специалисты и алхимики тысячелетиями искали элексир или код бессмертия. В последнее время этот поиск привел к ничем неприметному микроскопическому подвиду медуз туринопсис нутрикула размером всего 5 милиметров. Оказалось что они действительно бессмертны и способны прожить тысячу лет. А код бессмертия или молодости содержится в биохимии их организма. Они способны возращать себе молодость впрыснув какое то вещество после размножения и достижения определенного предела биоритмов. С этого момента начинается омоложение, поворачиваясь в обратную сторону от взрослого состояния к личиночной форме, достигая стадии личиночного полипа, опять в сторону взрослого организма. Так продолжается сколько угодно раз, а фактически вечно, если они не будут уничтожены физически, к примеру хищником.

Для повышения продолжительности жизни и необходимой биохимии с пульсом в один - два удара в минуту, правильнее вводить организм в транс или оцепенение вместо того, чтобы его замораживать и повреждать клетки. Учитывая то, что в ограниченном пространстве можно создать фактически любые условия в тысячи или милионы раз отличающиеся по величине от внешнего воздействия, то характер сна или оцепенения тоже можно создать вполне комфортное и гармоничное для конкретного организма. Это крайне важно при перелетах за пределы солнечной системы, где необходимо сохранить внутреннее постоянство биохимии, где особенно важен фон кальция и калия, но и существуют ограничение массы, когда криоустановки окажутся непозволительной роскошью.

Необходимо только воссоздать условия, чтобы достичь вечную молодость и бессмертие.

С незапамятных времен люди ломают голову для чего предназначались мегалитические дольмены. И все в схожих чертах описывают их устройство, это обычно четыре каменных тщательно подогнанных к друг другу камня, одно из которых имеет отверстие, а сверху прикрыто пятым камнем. Всё вместе иногда с шестым камнем предназначенным для пола, образует помещение, с закрывающей отверстие тщательно подогнанной пробкой.

Напрашивается вывод попавший внутрь человек и тем более закрывшись заглушкой собирался от чего-то отгородиться. От чего же? В данном исполнении один наиболее подходящий вывод от внешнего воздействия и в первую очередь от солнца, как помещают высокоточные приборы глубоко под землю, чтобы поднять их чувствительность. Дальмены скорее всего - это своего рода святилище, для достижения просветления и транса с пульсом в несколько ударов в минуту, где каждый в зависимости, на что заточен его мозг, мог получить своё сокровенное.

Кельи в манастырях монахов предназначены для тех же целей, только 10 000 лет назад люди подошли к этому, более основательно и монументально, учитывая взаимодействия природы, живого организма и законы физики. В таком исполнении сооружения и краснодарские дольмены, непременно позволяли поднять чувствительность и подготовить мозг для вхождения в транс. К примеру для связи с духами умерших и подключались к иформационному полю, что позволяло проскопию и ретроскопию - увидеть будущее и прошлое. Кроме этого просто отключали сь от земных проблем и прошлого, чтобы полноценно отдохнуть и начать новую жизнь.

Наши предки дали дольмены, способ и устройство для наиболее короткого пути, достижения гармонии и совершенства, а "технику" и "школу", нам необходимо восстановить самим.

МЕХАНИЧЕСКИЙ УДАР

Нижний Новгород
2013 год

Лабораторная работа № 1-21

Механический удар

Цель работы : Ознакомиться с элементами теории механического удара и экспериментально определить время удара , среднюю силу удара F , коэффициент восстановления Е , а также изучить основные характеристики удара и ознакомиться с цифровыми приборами для измерения временного интервалов.

Теоретическая часть

Ударом называется изменения состояния движения тела, вследствие кратковременного взаимодействия его с другим телом. Во время удара оба тела претерпевают изменения формы (деформацию). Сущность упругого удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел, за короткое время, преобразуется в энергию упругой деформации или в той или иной степени в энергию молекулярного движения. В процессе удара происходит перераспределение энергии между соударяющимися телами.

Пусть на плоскую поверхность массивной пластины падает шар с некоторой скоростью V 1 и отскакивает от нее со скоростью V 2 ­­.

Обозначим – нормальные и тангенциальные составляющие скоростей и , а и – соответственно углы падения и отражения. В идеальном случае при абсолютно упругом ударе, нормальные составляющие скоростей падения и отражения и их касательные составляющие были бы равны ; . При ударе всегда происходит частичная потеря механической энергии. Отношение как нормальных, так и тангенциальных составляющих скорости после удара к составляющим скорости до удара есть физическая характеристика, зависящая от природы сталкивающихся тел.



Эту характеристику Е называют коэффициентом восстановления. Числовое значение его лежит между 0 и 1.

Определение средней силы удара,

Начальной и конечной скоростей шарика при ударе

Экспериментальная установка состоит из стального шарика А, подвешенного на проводящих нитях, и неподвижного тела В большей массы, с которым шарик соударяется. Угол отклонения подвеса α измеряется по шкале. В момент удара на шар массой m действует сила тяжести со стороны Земли , сила реакции со стороны нити и средняя сила удара со стороны тела В (см. рис.2.).

На основании теоремы об изменении импульса материальной точки:

где и – векторы скоростей шара до и после удара; τ – длительность удара.

После проектирования уравнения (2) на горизонтальную ось определим среднюю силу удара:

(3)

Скорости шарика V 1 и V 2 определяются на основании закона сохранения и превращения энергии. Изменение механической энергии системы, образованной шариком и неподвижным телом В, в поле тяготения Земли определятся суммарной работой всех внешних и внутренних не потенциальных сил. Поскольку внешняя сила перпендикулярна перемещению и нить нерастяжима, то эта сила работы не совершает, внешняя сила и внутренняя сила упругого взаимодействия – потенциальны. Если эти силы много больше других не потенциальных сил, то полная механическая энергия выбранной системы не меняется. Поэтому, уравнение баланса энергии можно записать в виде:

(4)

Из чертежа (рис. 2) следует, что , тогда из уравнения (4) получим значения начальной V 1 и конечной V 2 скоростей шарика:

(5)

где и - углы отклонения шара до и после соударения.

Метод определения длительности удара

В данной работе длительность удара шарика о плиту определяется частотомером Ч3-54, функциональная схема которого представлена на рис.3. С генератора подается на вход системы управления СУ импульсы с периодом Т. Когда в процессе соударения металлической плиты В, электрическая цепь, образованная СУ, проводящими нитями подвеса шара, шаром, плитой В и счетчиком импульсов С ч, оказывается замкнутой, и система управления СУ пропускает на вход счетчика С ч импульсы электрического тока только в интервале времени , равном времени длительности удара. Число импульсов, зарегистрированных за время , равно , откуда .

Чтобы определить длительность удара , необходимо число импульсов, зарегистрированных счетчиком, умножить на период импульсов, снимаемых с генератора Г.

Экспериментальная часть

Исходные данные:

1. Масса шарика m = (16,7 ± 0,1)*10 -3 кг.

2. Длина нити l = 0,31 ± 0,01 м.

3. Ускорение свободного падения g = (9,81 ± 0,005) м/с 2 .

4. Опыт для каждого угла выполняем 5 раз.

Результаты опыта занесем в таблицу:

α 1 = 20 0 α 1 = 30 0 α 1 = 40 0 α 1 = 50 0 α 1 = 60 0
i 2i i 2i i 2i i 2i i 2i
61,9 17,1 58,0 26,8 54,9 37,0 52,4 43,6 48,9 57,8
65,7 17,2 58,2 26,5 45,2 35,9 51,0 45,0 42,6 58,0
64,0 16,9 58,4 26,9 52,8 36,7 49,9 46,7 49,6 57,2
65,4 16,8 58,4 26,7 54,3 36,0 48,2 46,0 48,5 57,6
64,0 16,9 57,3 26,8 52,4 37,0 50,2 43,9 48,4 58,1
Сред. 64,2 16,98 58,06 26,74 51,92 36,52 50,34 45,04 47,6 57,74

Расчёты

=20 0 мкс

=30 0 мкс

=40 0 мкс

Сила удара — импульс, скорость, техника и упражнения на взрывную силу для бойцов

Сила удара — импульс, скорость, техника и упражнения на взрывную силу для бойцов

Выпуск снят в фитнес-клубе Лидер-Спорт

Организатор турнира по силе удара Панчер, мастер спорта по пауэрлифтингу, многократный чемпион и рекордсмен Петербурга по жиму лежа Павел Бадыров продолжает рассуждать о силе удара, скорости удара, а также показывает упражнения на взрывную силу для бойцов.

Удар

Удар — кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь.

Физическая абстракция

При ударе выполняется закон сохранения импульса и закон сохранения момента импульса, но обычно не выполняется закон сохранения механической энергии. Предполагается, что за время удара действием внешних сил можно пренебречь, тогда полный импульс тел при ударе сохраняется, в противном случае нужно учитывать импульс внешних сил. Часть энергии обычно уходит на нагрев тел и звук.

Результат столкновения двух тел можно полностью рассчитать, если известно их движение до удара и механическая энергия после удара. Обычно рассматривают либо абсолютно упругий удар, либо вводят коэффициент сохранения энергии k, как отношение кинетической энергии после удара к кинетической энергии до удара при ударе одного тела о неподвижную стенку, сделанную из материала другого тела. Таким образом, k является характеристикой материала, из которого изготовлены тела, и (предположительно) не зависит от остальных параметров тел (формы, скорости и т. п.).

Как понимать силу удара в килограммах

Импульс движущегося тела p=mV.

При торможении о препятствие этот импульс «гасится» импульсом силы сопротивления p=Ft (сила вообще не постоянная, но можно взять какое-то среднее значение).

Получаем, что F = mV / t — сила, с которой препятствие тормозит движущееся тело, и (по третьему закону Ньютона) движущееся тело действует на препятствие, т. е. сила удара:
F = mV / t, где t — время удара.

Килограмм-сила — просто старая единица измерения — 1 кгс (или кГ) = 9,8 Н, т. е. это вес тела массой 1 кг.
Для пересчёта достаточно силу в ньютонах разделить на ускорение свободного падения.

ЕЩЁ РАЗ О СИЛЕ УДАРА

Абсолютное большинство людей даже с высшим техническим образованием смутно представляют, что такое сила удара и от чего она может зависеть. Кто-то считает, что сила удара определяется импульсом или энергией, а кто-то – давлением. Одни путают сильные удары с ударами, приводящими к травмам, а другие считают, что силу удара надо измерять в единицах давления. Попробуем внести ясность в эту тему.

Сила удара, как и любая другая сила, измеряется в Ньютонах (Н) и килограмм-силах (кгс). Один Ньютон – это сила, благодаря которой тело массой 1 кг получает ускорение 1 м/с2. Одна кгс – это сила, которая сообщает телу массой 1 кг ускорение 1 g = 9,81 м/с2 (g – ускорение свободного падения). Поэтому 1 кгс = 9,81 Н. Вес тела массой m определяется силой притяжения Р, с которой он давит на опору: P = mg. Если масса Вашего тела 80 кг, то Ваш вес, определяемый силой тяжести или притяжением, P = 80 кгс. Но в просторечье говорят «мой вес 80 кг», и всем всё понятно. Поэтому часто о силе удара тоже говорят, что он составляет сколько-то кг, а подразумевается кгс.

Сила удара, в отличие от силы тяжести, достаточно кратковременна по времени. Форма ударного импульса (при простых столкновениях) колоколообразна и симметрична. В случае удара человека по мишени форма импульса не симметрична – она резко нарастает и относительно медленно и волнообразно падает. Общая длительность импульса определяется вложенной в удар массой, а время нарастания импульса определяется массой ударной конечности. Когда мы говорим о силе удара, мы всегда подразумеваем не среднее, а максимальное её значение в процессе соударения.

Бросим не очень сильно стакан в стенку, чтобы он разбился. Если он попал в ковёр, он может и не разбиться. Чтобы он разбился наверняка, надо увеличить силу броска, чтобы увеличить скорость стакана. В случае со стенкой – удар получился сильнее, так как стенка жёстче, и поэтому стакан разбился. Как мы видим, сила, действующая на стакан, оказалась зависящей не только от силы вашего броска, но также и от жёсткости места, куда попал стакан.

Так и удар человека. Только бросаем мы в мишень свою руку и часть тела, участвующую в ударе. Как показали исследования (см. «Физико-математическую модель удара»), часть тела, участвующая в ударе, на силу произведённого удара влияет мало, так как очень низка её скорость, хотя эта масса значительна (достигает половины массы тела). Но сила удара оказалась пропорциональна этой массе. Вывод простой: сила удара зависит от массы, участвующей в ударе, только косвенно, так как с помощью как раз этой массы происходит разгон нашей ударной конечности (руки или ноги) до максимальных скоростей. Также не забудьте, что импульс и энергия, сообщённая мишени при ударе, в основном (на 50–70%) определяется как раз именно этой массой.

Вернёмся к силе удара. Сила удара (F) в конечном счёте зависит от массы (m), размеров (S) и скорости (v) ударной конечности, а также от массы (M) и жёсткости (K) мишени. Основная формула силы удара по упругой мишени:

Из формулы видно, что чем легче мишень (мешок), тем меньше сила удара. Для мешка весом 20 кг по сравнению с мешком 100 кг сила удара уменьшается только на 10%. Но для мешков 6–8 кг сила удара уже падает на 25–30%. Понятно, что, ударив по воздушному шарику, какой-либо значительной величины мы вообще не получим.

Следующую информацию Вам придётся в основном принять на веру.

1. Прямой удар – не самый сильный из ударов, хотя и требует хорошей техники исполнения и особенно чувства дистанции. Хотя есть спортсмены, которые не умеют бить боковой, зато, как правило, прямой удар у них очень силён.

2. Сила бокового удара за счёт скорости ударной конечности всегда выше, чем прямого. Причём при поставленном ударе эта разница достигает 30–50%. Поэтому боковые удары, как правило, самые нокаутирующие.

3. Удар наотмашь (типа бэкфиста с разворотом) – самый лёгкий по технике исполнения и не требующий хорошей физической подготовки, практически самый сильный среди ударов рукой, особенно если ударяющий находится в хорошей физической форме. Только надо понимать, что его сила определяется большой контактной поверхностью, что легко достижимо на мягком мешке, а в реальном бою по той же причине при нанесении ударов по жёсткой сложной поверхности площадь контакта сильно уменьшается, сила удара резко падает, и он оказывается мало эффективным. Поэтому в бою требует ещё высокой точности, что совсем не просто реализовать.

Ещё раз подчеркнем, что удары рассмотрены с позиции силы, причём по мягкому и большому мешку, а не по величине наносимых повреждений.

Снарядные перчатки ослабляют удары на 3–7%.

Перчатки, используемые для соревнований, ослабляют удары на 15–25%.

Для ориентира результаты измерений силы поставленных ударов должны быть следующими:

Возможно вас заинтересует и это:

На этом все, ставьте лайки, делайте репосты — желаю вам успехов в ваших тренировках!

#уроки_бокса

Сила удара — импульс, скорость, техника и упражнения на взрывную силу для бойцов от Павла Бадырова обновлено: Январь 6, 2018 автором: Boxingguru

Если изделия имеют амортизаторы, то при выборе длительности действия ударного ускорения учитывают низшие резонансные частоты самих изделий, а не элементов защиты.

В качестве проверяемых выбирают параметры, по изменению которых можно судить об ударной устойчивости РЭА в целом (искажение выходного сигнала, стабильность характеристик функционирования и т.д.).

При разработке программы испытаний направления воздействий ударов устанавливают в зависимости от конкретных свойств испытываемых РЭА. Если свойства РЭА неизвестны, то испытание следует проводить в трех взаимно перпендикулярных направлениях. При этом рекомендуется выбирать (из диапазона, оговоренного в ТУ) длительность ударов, вызывающих резонансное возбуждение испытываемых РЭА.

Ударную прочность оценивают по целостности конструкции (например, отсутствию трещин, наличию контакта). Изделия считают выдержавшими испытание на ударную прочность, если после испытания они удовлетворяют требованиям стандартов и ПИ для данного вида испытания.

Испытание на ударную устойчивость рекомендуется проводить после испытания на ударную прочность. Часто их совмещают. В отличие от испытания на ударную прочность испытание на ударную устойчивость осуществляют под электрической нагрузкой, характер и параметры которой устанавливают в ТУ и ПИ. При этом контроль параметров РЭА производят в процессе удара для проверки работоспособности изделий и выявления ложный срабатываний. Изделия считают выдержавшими испытание, если в процессе и после него они удовлетворяют требованиям, установленным в стандартах и ПИ для данного вида испытания.



2.3. Задание третье.

Изучить устройства для испытания РЭА на воздействие удара /1. с.263-268. 2. с.171-178. 3. с.138-143/

Устройства для испытания. Ударные стенды классифицируют по следующим признакам:

По характеру воспроизводимых ударов – стенды одиночных и многократных ударов;

По способу получения ударных перегрузок – стенды свободного падения и принудительного разгона платформы с испытываемым изделием;

По конструкции тормозных устройств – с жесткой наковальней, с пружинящейся наковальней, с амортизирующими резиновыми и фетровыми прокладками, со сминающимися деформируемыми тормозными устройствами, с гидравлическими тормозными устройствами и т.д.

В зависимости от конструкции ударного стенда и в особенности от применяемого в нем тормозного устройства получают ударные импульсы полусинусоидальной, треугольной и трапецеидальной формы.

Для испытания РЭА на одиночные удары служат ударные стенды копрового типа, а на многократные – стенды кулачкового типа, воспроизводящие удары полусинусоидальной формы. В этих стендах используется принцип свободного падания платформы с испытываемым изделием на амортизирующие прокладки.

Основными элементами ударного стенда копрового типа (рис.2.3.1.) являются: стол 3; основание 7, служащее для гашения скорости стола в момент удара; направляющая 4, обеспечивающая горизонтальное положение стола в момент удара; прокладки 5, формирующие ударный импульс.

Энергия, необходимая для создания удара, накапливается в результате подъема стола с закрепленным на нем испытываемым изделием на заданную высоту. Для подъема стола и последующего его сбрасывания стенд снабжается приводом и механизмом сброса. Кинетическая энергия, приобретенная телом в процессе

Звукоизоляцией, снижающей уровень звукового давления до установленных норм;

Заземляющим контуром, сопротивление не 40 м;

Бетонным фундаментом.

4. При эксплуатации стенд ударный должен быть

установлен на фундамент.

5. Питание установки от сети переменного тока

напряжением 220± В, частоты 50 Гц.

6. Потребляемая электрическая мощность (максимальная) не

более 1кВт.

7. Установка обеспечивает получение сочетаний ускорений и