. P.Фиттиг распространил реакцию Вюрца на область ароматических углеводородов

Современный подход к реакции Вюрца

Для преодоления множества побочных процессов было предложено использовать более селективные и современные методы. Основные разработки ведутся по применению не-натриевых металлов. Для проведения реакции Вюрца используют серебро , цинк , железо и пирофорный свинец . Последний реагент позволяет проводить реакцию в присутствии карбоксильной группы.

Внутримолекулярная реакция Вюрца

В 90-х годах XIX в. Фрейнд и Густавсон предложили внутримолекулярный вариант. Так 1,3-дибромпропан с успехом может быть превращен в циклопропан действием цинка в присутствии иодида натрия, как активатора. По этому пути удалось получить бисспироциклопропан и бициклобутан . Позже было предложено генерировать промежуточные соединения Гриньяра , которые впоследствии при действии трифторацетата серебра ведут к внутримолекулярному кросс-сочетанию. Этот метод неприменим для получения средних циклов.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Реакция Вюрца" в других словарях:

    Реакция Вюрца, или синтез Вюрца метод синтеза симметричных насыщенных углеводородов действием металлического натрия на алкилгалогениды (обычно бромиды или иодиды): 2RBr + 2Na → R R + 2NaBr Реакция Вюрца открыта Ш. А. Вюрцем (1855). P.Фиттиг… … Википедия

    Метод синтеза насыщенных углеводородов действием металлического натрия на алкилгалогениды (обычно бромиды или иодиды): 2RBr + 2Na → R R + 2NaBr. B. p. открыта Ш. А. Вюрцем. (1855). P. Фиттиг распространил В. р. на… … Большая советская энциклопедия

    Конденсация алкилгалогенидов под действием Na (реже Li или К) с образованием предельных углеводородов: 2RHal + 2Na > RЧR + 2NaHal, где Hal обычно Br или I. При использовании в р ции разл. алкилгалогенидов (RHal и R Hal) образуется… … Химическая энциклопедия

    - … Википедия

    Синтез орг. соединений с применением магнийорг. галогенидов RMgHal (реактивов Гриньяра). Последние обычно получают по р ции: RHal + Mg > RMgHal. При этом р р RHal в диэтиловом эфире медленно при перемешивании прибавляют к суспензии Mg в этом же р … Химическая энциклопедия

    См. Вюрца реакция … Химическая энциклопедия

    Получение эфиров b гидроксикарбоновых к т взаимод. альдегидов или кетонов с эфирами a галогенкарбоновых к т в присут. Zh (т. наз. классическая P.p.): В р цию вступают разл. альдегиды и кетоны (насыщенные или ненасыщенные, ароматические,… … Химическая энциклопедия

    В органической химии существует огромное число реакций, носящих имя исследователя, открывшего или исследовавшего данную реакцию. Часто в названии реакции фигурируют имена нескольких ученых: это могут быть авторы первой публикации (например,… … Википедия

    Эта статья о химических соединениях. О канадской алюминиевой компании см. Rio Tinto Alcan … Википедия

    Шарль Адольф Вюрц Charles Adolphe Würtz … Википедия

Книги

  • Жизнь замечательных устройств , Курамшин Аркадий Искандерович , Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один… Категория: Химические науки Серия: Научпоп Рунета Издатель: АСТ ,
  • Жизнь замечательных устройств , Курамшин А. , Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один… Категория:

Каждый класс химических соединений способен проявлять свойства, обусловленные их электронным строением. Для алканов характерны реакции замещения, отщепления или окисления молекул. Все имеют свои особенности протекания, о которых пойдет дальше речь.

Что такое алканы

Это насыщенные углеводородные соединения, которые носят название парафинов. Их молекулы состоят только из атомов углеродных и водородных, имеют линейную или разветвленную ациклическую цепочку, в которой есть лишь одинарные соединения. Учитывая характеристику класса, можно вычислить, какие реакции характерны для алканов. Они подчиняются формуле для всего класса: H 2n+2 C n .

Строение химическое

Молекула парафинов включает углеродные атомы, проявляющие sp 3 -гибридизацию. У них все валентные четыре орбитали обладают одинаковой формой, энергией и направлением в пространстве. Размер угла между энергетическими уровнями составляет 109° и 28".

Наличие одинарных связей в молекулах определяет, какие реакции характерны для алканов. В них присутствуют σ-соединения. Связь между углеродами является неполярной и слабо поляризуемой, она немного длиннее, чем в C−H. Также наблюдается смещение электронной плотности к углеродному атому, как наиболее электроотрицательному. В результате соединение C−H характеризуется малой полярностью.

Реакции замещения

Вещества класса парафинов обладают слабой химической активностью. Это можно объяснить прочностью связей между C−C и C−H, которые трудно разорвать из-за неполярности. В основе их разрушения лежит механизм гомолитический, при котором участвуют радикалы свободного типа. Именно поэтому для алканов характерны реакции замещения. Такие веществ не способны взаимодействовать с молекулами воды или несущими заряд ионами.

Им причисляют замещение свободнорадикальное, в котором водородные атомы заменяются на галогеновые элементы или другие активные группы. К таким реакциям относят процессы, связанные с галогенированием, сульфохлорированием и нитрованием. Их результатом является получение алкановых производных.

В основе механизма реакций замещения по свободнорадикальному типу лежат основные три стадии:

  1. Начинается процесс с инициирования или зарождения цепочки, в результате которого формируются свободные радикалы. Катализаторами служат источники света ультрафиолетового и нагревание.
  2. Затем развивается цепочка, в которой осуществляются последовательные взаимодействия активных частиц с неактивными молекулами. Происходит их превращение в молекулы и радикалы соответственно.
  3. Конечным этапом будет обрыв цепочки. Наблюдается рекомбинация или исчезновение активных частиц. Так прекращается развитие цепной реакции.

Процесс галогенирования

В его основе лежит механизм радикального типа. Реакция галогенирования алканов проходит при облучении ультрафиолетом и нагревании смеси из галогенов и углеводородов.

Все стадии процесса подчиняются правилу, которое высказал Марковников. В нем указано, что подвергается замещению галогеном, прежде всего, который принадлежит самому гидрированному углероду. Галогенирование протекает в такой последовательности: от третичного атома до первичного углерода.

Процесс проходит лучше у молекул алканов с длинной основной углеродной цепочкой. Это связано с уменьшением ионизирующей энергии в данном направлении, от вещества легче отщепляется электрон.

Примером может служить хлорирование молекулы метана. Действие ультрафиолета приводит к расщеплению хлора на радикальные частицы, которые осуществляют атаку на алкан. Происходит отрыв атомарного водорода и формирование H 3 C· или метильного радикала. Такая частица, в свою очередь, атакует молекулярный хлор, приводя к разрушению ее структуры и образованию нового химического реагента.

На каждом этапе процесса осуществляется замещение только одного водородного атома. Реакция галогенирования алканов приводит к постепенному формированию хлорметановой, дихлорметановой, трихлорметановой и тетрахлорметановой молекулы.

Схематически процесс выглядит следующим образом:

H 4 C + Cl:Cl → H 3 CCl + HCl,

H 3 CCl + Cl:Cl → H 2 CCl 2 + HCl,

H 2 CCl 2 + Cl:Cl → HCCl 3 + HCl,

HCCl 3 + Cl:Cl → CCl 4 + HCl.

В отличие от хлорирования молекулы метана, проведение такого процесса с другими алканами характеризуется получением веществ, у которых замещение водорода происходит не у одного атома углерода, а у нескольких. Их количественное соотношение связано с температурными показателями. В холодных условиях наблюдается уменьшение скорости образования производных с третичной, вторичной и первичной структурой.

С повышением температурного показателя быстрота формирования таких соединений выравнивается. На процесс галогенирования существует влияние фактора статического, который указывает на разную вероятность столкновения радикала с углеродным атомом.

Процесс галогенирования йодом в обычных условиях не протекает. Необходимо создание специальных условий. При воздействии на метан данным галогеном происходит возникновение йодистого водорода. На него оказывает действие йодистый метил, в результате выделяются первоначальные реагенты: метан и йод. Такая реакция считается обратимой.

Реакция Вюрца для алканов

Является методом получения с симметричной структурой. В качестве реагирующих веществ используют натрий металлический, алкилбромиды или алкилхлориды. При их взаимодействии получают галогенид натрия и увеличенную углеводородную цепь, которая является суммой двух радикалов углеводородов. Схематически синтез выглядит следующим образом: R−Cl + Cl−R + 2Na → R−R + 2NaCl.

Реакция Вюрца для алканов возможна только в том случае, если в их молекулах галогены находятся у первичного углеродного атома. Например, CH 3 −CH 2 −CH 2 Br.

Если в процессе участвует галогенуглеводорододная смесь из двух соединений, то при конденсации их цепочек образуются три разных продукта. Примером такой реакции алканов может служить взаимодействие натрия с хлорметаном и хлорэтаном. На выходе получается смесь, содержащая бутан, пропан и этан.

Кроме натрия, можно применять другие щелочные металлы, к которым относят литий или калий.

Процесс сульфохлорирования

Его еще называют реакцией Рида. Протекает она по принципу свободнорадикального замещения. тип реакции алканов на действие смеси из диоксида серы и молекулярного хлора в присутствии ультрафиолетового излучения.

Процесс начинается с инициации цепного механизма, при котором из хлора получаются два радикала. Один из них атакует алкан, что приводит к возникновению алкильной частицы и молекулы хлороводорода. К углеводородному радикалу прикрепляется серы диоксид с формированием сложной частицы. Для стабилизации происходит захват одного хлорного атома из другой молекулы. Конечным веществом является сульфонилхлорид алкана, его применяют при синтезе поверхностно-активных соединений.

Схематически процесс выглядит так:

ClCl → hv ∙Cl + ∙Cl,

HR + ∙Cl → R∙ + HCl,

R∙ + OSO → ∙RSO 2 ,

∙RSO 2 + ClCl → RSO 2 Cl + ∙Cl.

Процессы, связанные с нитрованием

Алканы вступают в реакции с кислотой азотной в виде раствора 10%, а также с азота четырехвалентного оксидом в газообразном состоянии. Условиями ее протекания являются высокие температурные значения (около 140 °C) и низкие показатели давления. На выходе продуцируются нитроалканы.

Данный процесс свободнорадикального типа назвали в честь ученого Коновалова, открывшего синтез нитрования: CH 4 + HNO 3 → CH 3 NO 2 + H 2 O.

Механизм отщепления

Для алканов характерны реакции дегидрирования и крекинга. Молекула метана подвергается полному термическому разложению.

Основным механизмом вышеуказанных реакций является отщепление атомов от алканов.

Процесс дегидрирования

При отделении атомов водорода от углеродного скелета парафинов, за исключением метана, получаются непредельные соединения. Такие химические реакции алканов проходят в условиях высокой температуры (от 400 до 600 °C) и под действием ускорителей в виде платины, никеля, и алюминия.

Если в реакции участвуют молекулы пропана или этана, то ее продуктами будет пропен или этен с одной двойной связью.

При дегидрировании четырех или пятиуглеродного скелета получаются диеновые соединения. Из бутана формируются бутадиен-1,3 и бутадиен-1,2.

Если в реакции присутствуют вещества с 6 и более атомами углеродов, то образуется бензол. В нем имеется ароматическое ядро с тремя связями двойными.

Процесс, связанный с разложением

В условиях высокой температуры реакции алканов могут проходить с разрывом связей углеродных и формированием активных частиц радикального типа. Такие процессы называют крекингом или пиролизом.

Нагревание реагирующих веществ до температур, превышающих 500 °C, приводит к разложению их молекул, в ходе которого образуются сложные смеси из радикалов алкильного типа.

Проведение при сильном нагревании пиролиза алканов с длинными углеродными цепочками связано с получением предельных и непредельных соединений. Его называют термическим крекингом. Такой процесс использовали до середины 20 века.

Недостатком было получение углеводородов с низким октановым числом (не более 65), поэтому его заменили Процесс проходит при температурных условиях, которые ниже 440 °C, и значениях давления, меньше 15 атмосфер, в присутствие алюмосиликатного ускорителя с выделением алканов, имеющих разветвлённую структуру. Примером может служить метановый пиролиз: 2CH 4 → t ° C 2 H 2 + 3H 2 . В ходе данной реакции образуется ацетилен и молекулярный водород.

Молекула метана может подвергаться конверсии. Для такой реакции необходима вода и никелевый катализатор. На выходе получается смесь из угарного газа и водорода.

Окислительные процессы

Химические реакции, характерные для алканов, связаны с отдачей электронов.

Существует автоокисление парафинов. В нем задействован свободно-радикальный механизм окисления насыщенных углеводородов. В ходе реакции из жидкой фазы алканов получают гидроперекиси. На начальном этапе молекула парафина взаимодействует с кислородом, в результате выделяются активные радикалы. Далее с алкильной частицей взаимодействует еще одна молекула O 2 , получается ∙ROO. С перекисным радикалом жирной кислоты контактирует молекула алкана, после чего выделяется гидроперекись. Примером может служить автоокисление этана:

C 2 H 6 + O 2 → ∙C 2 H 5 + HOO∙,

∙C 2 H 5 + O 2 → ∙OOC 2 H 5 ,

∙OOC 2 H 5 + C 2 H 6 → HOOC 2 H 5 + ∙C 2 H 5 .

Для алканов характерны реакции горения, которые относятся к главным химическим свойствам, при определении их в составе топлива. Они имеют окислительный характер с выбросом тепла: 2C 2 H 6 + 7O 2 → 4CO 2 + 6H 2 O.

Если в процессе наблюдается малое количество кислорода, то конечным продуктом может быть уголь или углерода двухвалентный оксид, что определяется концентрацией O 2 .

При окислении алканов под влиянием каталитических веществ и нагревании до 200 °C получаются молекулы спирта, альдегида или карбоновой кислоты.

Пример с этаном:

C 2 H 6 + O 2 → C 2 H 5 OH (этанол),

C 2 H 6 + O 2 → CH 3 CHO + H 2 O (этаналь и вода),

2C 2 H 6 + 3O 2 → 2CH 3 COOH + 2H 2 O (этановая кислота и вода).

Алканы могут окисляться при действии на них трёхчленных циклических пероксидов. К ним относят диметилдиоксиран. Результатом окисления парафинов является молекула спирта.

Представители парафинов не реагируют на KMnO 4 или марганцовокислый калий, а также на

Изомеризация

На алканы тип реакции характеризуется замещением с электрофильным механизмом. Сюда причисляют изомеризацию углеродной цепи. Катализирует данный процесс алюминия хлорид, который взаимодействует с насыщенным парафином. Примером служит изомеризация молекулы бутана, которая становится 2-метилпропаном: C 4 H 10 → C 3 H 7 CH 3 .

Процесс ароматизации

Насыщенные вещества, у которых в основной цепочке углеродной содержится шесть или больше атомов углеродных, способны проводить дегидроциклизацию. Для коротких молекул не характерна такая реакция. Результатом всегда является шестичленный цикл в виде циклогексана и его производных.

В присутствии реакционных ускорителей проходит дальнейшее дегидрирование и превращение в более устойчивое бензольное кольцо. Происходит превращение ациклических углеводородов в ароматические соединения или арены. В качестве примера служит дегидроциклизация гексана:

H 3 C−CH 2 − CH 2 − CH 2 − CH 2 −CH 3 → C 6 H 12 (циклогексан),

C 6 H 12 → C 6 H 6 + 3H 2 (бензол).

РЕАКЦИЯ ВЮРЦА химическая реакция, позволяющая получать простейшие органические соединения – предельные углеводороды.

Сама реакция Вюрца заключается в конденсации алкилгалогенидов под действием металлического Na, Li или реже K:

2RHal + 2Na ® R–R + 2NaHal.

Иногда ее трактуют как взаимодействие RNa или RLi с R"Hal.

Реакция была открыта французским химиком-органиком Шарлем Вюрцем (Wurtz Charles (1817–1884) в 1855 при попытке получения этилнатрия из хлористого этила и металлического натрия.

Несмотря на то, что реакция Вюрца приводит к образованию новой углерод-углеродной связи, она нечасто применяется в органическом синтезе. В основном с ее помощью получают предельные углеводороды с длинной углеродной цепью, особенно она полезна при получении индивидуальных углеводородов большой молекулярной массы, и, как видно из приведенной схемы, для получения заданного углеводорода следует брать только один алкилгалогенид, так как при конденсации двух алкилгалогенидов получается смесь всех трех возможных продуктов сочетания. Поэтому если используется алкилгалогенид и натрий, реакцией Вюрца можно получить только углеводороды с четным количеством атомов углерода. Наиболее успешно реакция Вюрца протекает с первичными алкилйодидами. Очень низкие выходы целевого продукта получают при использовании метода Вюрца для вторичных алкилгалогенидов. Реакцию обычно проводят в диэтиловом эфире. Использование углеводородов в качестве растворителей уменьшает селективность реакции.

Однако если использовать заранее приготовленное металлоорганическое соединение, например алкиллитий, то можно получить и несимметричные продукты конденсации:

RLi + R"Hal ® R – R" + LiHal

В обоих случаях реакция сопровождается образованием большого количества побочных продуктов за счет побочных процессов. Это иллюстрирует пример взаимодействия этиллития с 2-бромоктаном:

В этом случае 3-метилнонан и ряд побочных продуктов в указанных молярных соотношениях образуются как продукт реакции Вюрца.

Кроме натрия, в реакции Вюрца использовались такие металлы, как серебро , цинк , железо , медь и индий.

Реакция Вюрца успешно применяется для внутримолекулярных конденсаций для построения карбоциклических систем. Так из 1,3-дибромпропана под действием металлического цинка и йодида натрия (в качестве промотора реакции) может быть получен циклопропан:

Можно построить и другие напряженные карбоциклические системы. Например, из 1,3-дибромадамантана, используя натрий-калиевый сплав, может быть получен 1,3-дегидроадамантан:

А взаимодействие 1-бром-3-хлор-циклобутана с натрием приводит к бициклобутану:

Известен ряд разновидностей реакции Вюрца, получивших свои собственные названия. Это реакция Вюрца – Фиттига и реакция Ульмана. Первая заключается в конденсации алкил- и арилгалогенида под действием натрия с образованием алкилароматического производного. В случае реакции Ульмана в конденсацию обычно вводят арилйодиды, а вместо натрия используют свежеприготовленную медь, эта реакция позволяет с высоким выходом получать различные биарильные производные, в том числе, и несимметричные, содержащие заместитель в одном из ароматических ядер:

Как полагают, механизм реакции Вюрца состоит из двух основных стадий:

1) образование металлоорганического производного (если использется металл, а не заранее приготовленное металлоорганическое соединение):

RHal + 2Na ® R–Na + NaHal,

2) взаимодействие образовавшегося, в данном случае, натрийорганического соединения с другой молекулой алкилгалогенида:

RHal + R–Na ® RR + NaHal.

В зависимости от природы R и условий проведения реакции вторая стадия процесса может протекать по ионному либо по радикальному механизму.

Владимир Корольков

Хотя можно представить, что RR образуется следующим образом:

где М – металл,

но все же основной реакционный поток протекает по другому пути:

Эта стадия протекает следующим образом:

Эта реакция может рассматриваться одновременно и как S N 2-, и как S E 2-замещение, а также как «синхронный» четырехцентровой процесс (Пальм, стр. 315-316):

Истинно синхронный механизм предполагает образование ковалентной связи между металлом М и галогеном Х. Однако процесс типа S E 2–S N 2, когда противоположные заряды возникающих ионов М + и Х - в активированном состоянии расположены рядом и электростатически стабилизируют друг друга, что равносильно частичному возникновению ионной связи – также можно назвать «синхронным».

(3) Побочно может протекать диспропорционирование:

Фактически олефин RCH=CH 2 образуется из субстрата RCH 2 CH 2 Cl в результате Е2-элиминирования под действием основания RСH 2 CH 2 y .

г) Катализируемая основаниями реакция Манниха

Реакция Манниха – это реакция аминометилирования. В качестве аминокомпонента используют вторичные и первичные алифатические и ароматические амины, в качестве метиленового компонента – формальдегид (в виде водного раствора – формалина или в виде параформа), реже – ацетальдегид. В качестве аминометилирующего агента может использоваться заранее приготовленный аминаль.

В качестве катализирующего реакцию основания может выступать сам аминокомпонент.

СН-кислота может вступать в реакцию аминометилирования также в енольной форме, с образованием циклического переходного состояния.

В кислых средах аминометилирование протекает по другому механизму, с участием высоко реакционноспособного интермедиата – карбений-иммониевого иона, являющегося азотистым аналогом формальдегида (здесь этот механизм не рассматривается; подробно см. Беккер, с. 301-302, 394-395; «Практикум», Беккер, с. 150-155; Марч, т. 3, с. 344-347).

3) Присоединение по двойным связям (обычно С=О)

К этому типу реакций карбанионов относится целая группа синтетически важных реакций:

а) Ацилирование сложных эфиров сложными эфирами (конденсация Кляйзена)

б) Альдольная конденсация и другие аналогичные реакции

Катализируемая основаниями альдольная конденсация основана на способности карбонильного соединения реагировать как в качестве карбокислоты (карбаниона, т. е. нуклеофила) за счет кислых a-С–Н-водородов, так и в качестве электрофила за счет электрофильного карбонильного углерода.

На последней стадии образовавшийся алкоголят-ион отрывает протон от ранее образовавшегося протонированного основания (или от растворителя), переходя в незаряженный продукт конденсации (b-гидроксиальдегид или b-гидроксикетон), при этом регенерируется катализатор (гидроксид-ион). Предпосылкой для осуществления этой стадии «нейтрализации» является более высокая основность алкоголят-иона (рК а 17-19) по сравнению с гидроксид-ионом (рК а 15,7). Если же оснόвный катализатор имеет более высокую основность, чем алкоголят-ион, то стадия «нейтрализации» не может осуществиться, и для конденсации необходимо применять эквимолярное количество основания. Пример такой конденсации будет рассмотрен позднее.


Если получающееся b-гидроксикарбонильное соединение все еще содержит кислый a-С–Н-водород, то в сильно щелочной водной среде оно также способно образовать соответствующий карбанион, который может присоединяться к молекуле исходного карбонильного соединения и т. д. [Сайкс, с. 117-118]. С другой стороны, поскольку оно содержит карбонильную группу, то может присоединять карбанион исходного соединения. В результате при действии сильного основания на такие альдегиды, как, например, ацетальдегид, образуются низкомолекулярные полимеры. Реакцию можно остановить после первого «простого» присоединения, используя слабые основания, например, карбонат калия.

Реакции альдольной конденсации могут осложняться процессом «кротонизации» (кротоновой конденсации). В цвиттер-ионной таутомерной форме b-гидроксикарбонильного соединения возникает обстановка сильного выталкивания с участием двойной связи в качестве проводника электронного смещения [Пальм, с. 377]:

В образующемся ненасыщенном карбонильном соединении двойная связь сопряжена с карбонильной группой, и это в некоторой степени способствует его образованию. Однако реакция кротонизации особенно характерна для систем с ароматическими заместителями, поскольку как цвиттер-ион, так и активированный комплекс, напоминающий продукт реакции, стабилизированы сопряжением двойной связи с p-электронной системой ароматического ядра. Результат реакции эквивалентен дегидратации соответствующего b-гидроксикетона (или альдегида).

Следует отметить, что дегидратация, вызванная действием основания – редкое явление. Как правило, отщепление молекулы воды протекает в условиях кислотного катализа.

Предложен и другой механизм кротонизации, предполагающий ее протекание через карбанион b-гидроксикарбонильного соединения [Сайкс, с. 118]:

Смешанные реакции альдольной конденсации, например, реакции с двумя разными альдегидами, обычно не имеют практического значения, поскольку при взаимодействии двух альдегидов с двумя полученными из них анионами образуется смесь четырех различных продуктов. Однако некоторые «смешанные» альдольные реакции могут представлять практический интерес в том случае, если один из карбонильных компонентов, например, бензальдегид, не может образовывать карбанион, а поэтому может только присоединять карбанион, генерированный из другого карбонильного компонента. Пример такой реакции приведен выше, при рассмотрении механизма кротонизации по Пальму. К этому типу реакций относится также реакция альдольной конденсации (с кротонизацией) ацетальдегида с бензальдегидом:

Обычная альдольная конденсация (т. е. несмешанная) невозможна для альдегидов, не имеющих a-С–Н-связей, а именно: для формальдегида HCHO, бензальдегида PhCHO или R 3 CCHO – и поэтому не способных образовывать карбанионы обсуждаемого типа. При взаимодействии любого из таких альдегидов с водным раствором основания гидроксильный ион просто присоединяется к карбонильной группе. Однако при использовании сильного основания в больших концентрациях такие альдегиды подвергаются окислительно-восстановительному диспропорционированию (реакция Канницаро), когда из двух молекул альдегида одна окисляется до соответствующей кислоты (в виде аниона), а другая восстанавливается до соответствующего спирта:

Поскольку формальдегид вследствие большой электроотрицательности карбонильной группы все же является карбокислотой, то он способен к своеобразной альдольной конденсации в щелочной среде:

Таким путем образуются полигидроксиальдегиды и кетоны, в том числе представители класса моносахаридов.

Если карбонильной компонентой, реагирующей с C–H-кислотным карбонильным соединением, является производное карбоновой кислоты (сложный эфир, ангидрид, галогенангидрид), то обязательно происходит конденсация наподобие кротоновой, только отщепляется спирт, карбоновая кислота или гидрогалогенид, соответственно. В результате получаются резонансно-стабилизированные анионы (еноляты) b-дикарбонильных соединений:

Вследствие своей небольшой основности анионы b-дикарбонильных соединений, как правило, не способны регенерировать из протонированного оснόвного «катализатора» свободное основание (например, алкоголят-ион), поэтому необходимо использовать эквимолярное количество основного агента. Если же X=OCOR или Hal, то необходим еще один моль основания; таким образом в таких случаях всего берут два моля основания: 1 моль – чтобы генерировать анион С–Н-кислотного карбонильного соединения, и еще 1 моль – чтобы нейтрализовать выделяющуюся кислоту RCOOH или HHal.

Необходимо отметить, что альдольная конденсация может протекать также по кислотно-каталитическому механизму:

В качестве катализаторов могут выступать как протонные кислоты, так и кислоты Льюса (например, BF 3). Кислотный катализатор повышает карбонильную активность и, кроме того, катализирует енолизацию кислотной компоненты. Енол благодаря оснόвным свойствам двойной связи атакует карбонильную группу как нуклеофильный реагент. Однако в кислой среде образовавшийся альдоль немедленно дегидратируется, т. е. в итоге происходит кротоновая конденсация.

См. также Реутов, т. 1, стр. 490-491.

В промышленности обычно получают вещество в больших количествах, стремясь к максимальной рентабельности. Часто можно использовать не чистое органическое соединение, а смесь. В ряде случаев экономически выгодно проводить разделение даже сложных смесей, в особенности, если одновременно удается выделить и другие полезные вещества. Известно много случаев, когда оказывается прибыльна разработка уникального метода синтеза и построение специального предприятия для выпуска высокорентабельного вещества.

В лаборатории обычно необходимо синтезировать небольшие количества вещества (граммы и доли грамма). В исследованиях химикам почти всегда необходимы индивидуальные вещества, а не смеси. В отличие от промышленности время имеет большую ценность, чем цена. Кроме того, лабораторные синтезы всегда гибкие, потому что исследователь не заинтересован в многократном повторении изученного процесса. Поэтому используются методы, позволяющие быстро, с высоким выходом получить целевой продукт с минимальным содержанием примесей.

Важно, что лабораторные (но не промышленные) методы, как правило, могут быть распространены на весь класс синтезируемых соединений.

В ходе изучения курса органической химии основное внимание направлено на лабораторные методы получения. При решении задач не следует использовать промышленные методы, даже в том случае, если они используются для получения именно того вещества, синтез которого необходимо спланировать. Например, если в ходе синтеза необходимо синтезировать этилен, его следует получать, используя общие методы синтеза алкенов, хотя это соединение в огромных количествах получают крекингом.

Алкены и алкины в присутствии гетерогенных катализаторов, таких как Pt, Pd, Ni, легко присоединяют один или два моль водорода при незначительном нагревании и невысоком давлении. При этом количественно образуются алканы с тем же углеродным скелетом.

Галогенопроизводные насыщенных углеводородов могут быть восстановлены до алканов металлом в кислой среде:

Алканы могут быть получены гидролизом реактивов Гриньяра:

Приведенные выше методы позволяют синтезировать алканы, имеющие такой же углеродный скелет, как в исходной молекуле.

Для синтеза парафинов, строение углеродной цепи которых отличается от исходных веществ, известно несколько методов. Моногалогенопроизводные алканов при взаимодействии с металлическим натрием превращаются в предельные углеводороды по реакции Вюрца. В ходе реакции образуется углерод-углеродная связь между атомами углерода, связанными в исходном соединении с галогенами .

Реакция Вюрца может быть использована исключительно для синтеза симметричных алканов (R- R) с четным числом углеродных атомов . Во избежание образования смесей алканов в эту реакцию нужно вводить только одно галогенопроизводное.

Ограничения реакции Вюрца понятны из следующего примера.

В реакции образуется смесь пропана, этана и н -бутана. Поскольку скорости реакций близки, невозможно предложить условия, в которых образование пропана будет преобладающим процессом. Следовательно, две трети исходных веществ будут израсходованы впустую. Кроме того, возникает сложная проблема разделения продуктов реакции.

При распространении реакции Вюрца на более сложные галогенопроизводные следует соблюдать осторожность. Щелочные металлы обладают очень высокой реакционной способностью. Если в молекуле, кроме атома галогена, есть функциональные группы, в большинстве случаев реакция натрия или калия с ними пойдет быстрее, чем с галогеном. Не имеет смысла даже пытаться проводить реакцию Вюрца, если в молекуле наряду с галогеном есть гидрокси- (OH), карбокси- (СOOH), сульфо- (SO 3 H) и многие другие группировки.

Одним из способов получения алканов является реакция декарбоксилирования (отщепления СО 2) солей карбоновых кислот. В некоторых случаях этот процесс происходит очень легко уже при незначительном нагревании. Hасыщенные карбоновые кислоты алифатического ряда отщепляют карбоксильную группу только при прокаливании их солей со щелочью.

В результате декарбоксилирования образуется алкан, содержащий на один атом углерода меньше, чем было в исходной кислоте.

Если соль карбоновой кислоты алифатического ряда подвергнуть электролизу (анодный синтез Кольбе), то на аноде карбоксилат-анион отдает электроду один электрон, превращаясь в нестабильный радикал. Выброс СО 2 приводит к алкильному радикалу. При рекомбинации двух алкильных радикалов образуется симметричный алкан с четным числом атомов углерода.


Лекция № 8

Углеводороды

· Алкены. Гомологический ряд, номенклатура, виды изомерии. Геометрическая изомерия в ряду алкенов. Цис- и транс- изомеры, E,Z-номенклатура. Причины отсутствия свободного вращения относительно двойной связи. Физические свойства, закономерности их изменения в гомологическом ряду и спектральные характеристики алкенов.

· Методы получения: дегидрирование алканов, крекинг нефти, частичное гидрирование алкинов, дегалогенирование, дегидрогалогенирование галогеналканов и дегидратация спиртов (правило Зайцева).

Алкены (олефины, этиленовые углеводороды)

Алкены - открытоцепные углеводороды, отвечающие общей формуле C n H 2 n .и содержащие в молекуле одну двойную связь (p-связь).

По сравнению с алканами соответствующие этиленовые углеводороды образуют большее число изомеров, что связано не только с различиями в углеродных скелетах, но также с расположением двойной связи и геометрией молекулы.

Рассмотрим изомерию алкенов с четырьмя атомами углерода. Кроме структурных изомеров есть изомеры положения двойной связи (бутен-1 и бутен-2). Бутен-2 может существовать в виде двух изомеров, отличающихся пространственным расположением заместителей относительно двойной связи. Поскольку свободное вращение относительно p-связи невозможно (барьер 60 ккал) и весь фрагмент молекулы лежит в одной плоскости, метильные группы могут располагаться либо с одной стороны от двойной связи, либо с противоположных сторон. В названии первых используют приставку цис - (с одной стороны – лат.), вторых – транс - (через – лат.). Такой вид пространственной изомерии называется геометрической.