Муниципальное бюджетное образовательное учреждение

«Школа №129»

Автозаводского района г. Нижнего Новгорода

Научное общество учащихся

Анализ лекарственных препаратов.

Выполнила: Тяпкина Виктория

ученица 10 А класса

Научные руководители:

Новик И.Р. доцент кафедры химии и химического образования НГПУ им. К. Минина; к.п.н.;

Сидорова А.В . учитель химии

МБОУ «Школа № 129».

Нижний Новгород

2016 г.

Содержание

Введение……………………………………………………………………….3

Глава 1.Сведения о лекарственных веществах

    1. История применения лекарственных веществ………………………….5

      Классификация лекарственных препаратов…………………………….8

      Состав и физические свойства лекарственных веществ……………….11

      Физиологические и фармакологические свойства лекарственных веществ…………………………………………………………………….16

      Выводы к 1 главе………………………………………………………….19

Глава 2. Исследования качества лекарственных препаратов

2.1. Качество лекарственных препаратов……………………………………21

2.2. Анализ лекарственных препаратов……………………………………...25

Заключение…………………………………………………………………….31

Библиографический список…………………………………………………..32

Введение

«Лекарство твое в тебе самом, но ты этого не чувствуешь, а болезнь твоя из-за тебя же самого, но ты этого не видишь. Думаешь, что ты – это маленькое тело, а ведь в тебе таится (свернут) огромный мир»

Али ибн Абу Талиб

Лекарственное вещество - индивидуальное химическое соединение или биологическое вещество, обладающее лечебными или профилактическими свойствами.

Человечество использует лекарства еще с древних времен. Так в Китае за 3000 лет до н.э. в качестве лекарств использовали вещества растительного, животного происхождения, минералы. В Индии написана медицинская книга «Аюверда»(6-5 век до н. э),в которой даются сведения о лекарственных растениях. Древнегреческий врач Гиппократ (460-377 гг. до н.э.) в своей медицинской практике использовал свыше 230 лекарственных растений.

В эпоху Средневековья многие лекарственные средства были открыты и внедрены в медицинскую практику благодаря алхимии. В 19 веке вследствие общего прогресса естественных наук арсенал лекарственных веществ существенно расширился. Появились лекарственные вещества, полученные путем химического синтеза (хлороформ, фенол, салициловая кислота, ацетилсалициловая кислота и др.).

В 19 веке начинает развиваться химико-фармацевтическая промышленность, обеспечивающая массовый выпуск лекарственных средств. Лекарственные средства - это вещества или смеси веществ, применяемые для профилактики, диагностики, лечения заболеваний, а также для регуляции других состояний. Современные лекарственные средства разрабатываются в фармацевтических лабораториях на основе растительного, минерального и животного сырья, а также продуктов химического синтеза. Лекарственные средства проходят лабораторные клинические испытания и только после этого применяются в медицинской практике.

В настоящее время создается огромное количество лекарственных веществ, но также много и подделки. По данным Всемирной организации здравоохранения (ВОЗ), наибольший процент подделок приходится на антибиотики - 42%. В нашей стране, по информации Минздрава, фальсифицированные антибиотики составляют сегодня 47 % от общего числа препаратов – подделок, гормональные средства-1%,противогрибковые средства, анальгетики и препараты, влияющие на функцию желудочно -кишечного тракта -7%.

Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье, потому для дальнейших исследований мы взяли именно эти вещества.

Цель исследования: познакомиться со свойствами лекарственных препаратов и установить их качество с помощью химического анализа.

Объект исследования: препарат анальгина, аспирина (ацетилсалициловой кислоты), парацетамола.

Предмет исследования: качественный состав препаратов.

Задачи:

    Изучить литературу (научную и медицинскую) с целью установления состава изучаемых лекарственных веществ, их классификации, химических, физических и фармацевтических свойств.

    Подобрать методику, подходящую для установления качества выбранных лекарственных препаратов в аналитической лаборатории.

    Провести исследование качества лекарственных препаратов по выбранной методике качественного анализа.

    Проанализировать результаты, обработать их и оформить работу.

Гипотеза: проведя анализ качества лекарственных препаратов по выбранным методикам можно определить качество подлинности препаратов и сделать необходимые выводы.

Глава 1. Сведения о лекарственных веществах

    1. История применения лекарственных веществ

Учение о лекарствах является одной из самых древних медицинских дисциплин. По-видимому, лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Употребляя в пищу те или иные растения, наблюдая за животными, поедающими растения, человек постепенно знакомился со свойствами растений, в том числе и с их лечебным действием. О том, что первые лекарства были в основном растительного происхождения, мы можем судить по наиболее древним из дошедших до нас образцов письменности. В одном из египетских папирусов (XVII век до н. э.) описывается ряд растительных лекарственных средств; некоторые из них применяются и в настоящее время (например, масло касторовое и др.).

Известно, что в Древней Греции Гиппократ (III век до н. э.) использовал для лечения заболеваний различные лекарственные растения. При этом он рекомендовал пользоваться целыми, необработанными растениями, считая, что только в этом случае они сохраняют свою целебную силу.Позднее медики пришли к выводу, что в лекарственных растениях содержатся действующие начала, которые можно отделить от ненужных, балластных веществ. Во II веке н. э. Римский врач Клавдий Гален широко применял различные извлечения (вытяжки) из лекарственных растений. Для извлечения действующих начал из растений он использовал вина, уксусы. Спиртовые вытяжки из лекарственных растений применяют и в настоящее время. Это настойки и экстракты. В память о Галене настойки и экстракты относят к так называемым галеновым препаратам.

Большое количество лекарственных средств растительного происхождения упоминается в сочинениях крупнейшего таджикского медика эпохи Средневековья Абу Али Ибн-Сины (Авиценны), жившего в XI веке. Некоторые из этих средств используются и в настоящее время: камфора, препараты белены, ревеня, александрийского листа, спорыньи и др. Кроме лекарств растительного происхождения, медики применяли некоторые неорганические лекарственные вещества. Впервые вещества неорганической природы стал широко использовать в медицинской практике Парацельс (XV- XVI век). Он родился и получил образование в Швейцарии, был профессором в Базеле, а затем переселился в Зальцбург. Парацельс ввел в медицину многие лекарственные средства неорганического происхождения: соединения железа, ртути, свинца, меди, мышьяка, серы, сурьмы. Препараты указанных элементов назначали больным в больших дозах, и часто одновременно с лечебным эффектом они проявляли токсическое действие: вызывали рвоту, понос, слюнотечение и т. д. Это, однако, вполне соответствовало представлениям того времени о лекарственной терапии. Следует отметить, что в медицине долго удерживалось представление о болезни как о чем-то вошедшем в организм больного извне. Для «изгнания» болезни назначали вещества, вызывающие рвоту, понос, слюнотечение, обильное потоотделение, применяли массивные кровопускания. Одним из первых медиков, отказавшихся от лечения массивными дозами лекарств, был Ганеман (1755-1843). Он родился и получил медицинское образование в Германии а затем работал врачом в Вене. Ганеман обратил внимание на то, что больные, получавшие лекарства в больших дозах выздоравливают реже, чем больные, которые такого лечения не получали, поэтому он предложил резко уменьшить дозировку лекарств. Не имея для этого никаких фактических данных, Ганеман утверждал, что терапевтическое действие лекарств увеличивается с уменьшением дозы. Следуя этому принципу, он назначал больным лекарственные средства в очень малых дозах. Как показывает экспериментальная проверка, в этих случаях вещества не оказывают никакого фармакологического действия. Согласно другому принципу, провозглашенному Ганеманом и также совершенно необоснованному, всякое лекарственное вещество вызывает «лекарственную болезнь». Если «лекарственная болезнь» сходна с «натуральной болезнью», она вытесняет последнюю. Учение Ганемана получило название «гомеопатия» (homoios - одинаковый; pathos - страдание, т. е. лечение подобного подобным), а последователи Ганемана стали называться гомеопатами. За прошедший со времени Ганемана период гомеопатия мало изменилась. Принципы гомеопатического лечения не обоснованы экспериментально. Проверки гомеопатического метода лечения в клинике, проводимые при участии гомеопатов, не показали его существенного терапевтического эффекта.

Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ. В 1806 г. из опия был выделен морфин. В 1818 г. выделен стрихнин, в 1820 г. - кофеин, в 1832 г. - атропин, в последующие годы - папаверин, пилокарпин, кокаин и др. Всего к концу XIX века было выделено около 30 подобных веществ (алкалоидов растений). Выделение чистых действующих начал растений в изолированном виде позволило точно определить их свойства. Этому способствовало появление экспериментальных методов исследования.

Первые фармакологические эксперименты были проведены физиологами. В 1819 г. известный французский физиолог Ф. Мажанди впервые исследовал на лягушке действие стрихнина. В 1856 г. другой французский физиолог Клод Бернар провел на лягушке анализ действия кураре. Почти одновременно и независимо от Клода Бернара аналогичные эксперименты были проведены в Петербурге известным русским судебным медиком и фармакологом Е. В. Пеликаном.

1.2. Классификация лечебных препаратов

Бурное развитие фармацевтической промышленности привело к созданию огромного числа лекарственных средств (в настоящее время сотни тысяч). Даже в специальной литературе появляются такие выражения, как "лавина" лекарственных препаратов или "лекарственные джунгли". Естественно, сложившаяся ситуация весьма затрудняет изучение лекарственных средств и их рациональное применение. Возникает острая необходимость в разработке классификации лекарственных средств, которая помогла бы врачам ориентироваться в массе препаратов и выбирать оптимальное для больного средство.

Лекарственный препарат - фармакологическое средство, разрешенное уполномоченным на то органом соответствующей страны в установленном порядке для применения с целью лечения, предупреждения или диагностики заболевания у человека или животного.

Лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение (противоопухолевые, антиангинальные, противомикробные средства);

фармакологические средства (вазодилаторы, антикоагументы, диуретики);

химические соединения (алкалоиды, стероиды, гликоиды, бензодиазенины).

Классификация лекарственных средств:

I . Средства, действующие на ЦНС (центральную нервную систему).

1 . Средства для наркоза;

2. Снотворные средства;

3. Психотропные препараты;

4. Противосудорожные (противоэпилептические средства);

5. Средства для лечения паркинсонизма;

6. Анальгезирующие средства и нестероидные противовоспалительные препараты;

7. Рвотные и противорвотные препараты.

II. Лекарственные средства, действующие на периферическую НС (нервную систему).

1. Средства, действующие на периферические холинергические процессы;

2. Средства, действующие на периферические адренергические процессы;

3. Дофалин и дофаминерические препараты;

4. Гистамин и антигистаминные препараты;

5. Серотинин, серотониноподобные и антисеротониновые препараты.

III . Средства, действующие преимущественно в области чувствительных нервных окончаний.

1. Местноанестезирующие препараты;

2. Обвалакивающие и адсорбирующие средства;

3. Вяжущие средства;

4. Средства, действие которых связано преимущественно с раздражением нервных окончаний слизистых оболочек и кожи;

5. Отхаркивающие средства;

6. Слабительные средства.

IV . Средства, действующие на ССС (сердечно-сосудистую систему).

1. Сердечные гликозиды;

2. Антиаритмические препараты;

3. Сосудорасширяющие и спазмолитические средства;

4. Антиангинальные препараты;

5. Препараты, улучшающие мозговое кровообращение;

6. Антигипертензивные средства;

7. Спазмолитические средства разных групп;

8. Вещества, влияющие на ангиотензиновую систему.

V. Средства, усиливающие выделительную функцию почек.

1. Диуретические средства;

2. Средства, способствующие выведения мочевой кислоты и удалению мочевых конкрементов.

VI. Желчегонные средства.

VII. Средства, влияющие на мускулатуру матки (маточные средства).

1. Средства, стимулирующие мускулатуру матки;

2. Средства, расслабляющие мускулатуру матки (токолитики).

VIII. Средства, влияющие на процессы обмена веществ.

1. Гормоны, их аналоги и антигормональные препараты;

2. Витамины и их аналоги;

3. Ферментны препараты и вещества с антиферментной активностью;

4. Средства, влияющие на свертывание крови;

5. Препараты гипохолестеринемического и гиполипопротеинемического действия;

6. Аминокислоты;

7. Плазмозамещающие растворы и средства для парентерального питания;

8. Препараты, применяемые для коррекции кислотно-щелочного и ионного равновесия в организме;

9. Разные препараты, стимулирующие метаболические процессы.

IX. Лекарственные препараты, модулирующие процессы иммунитете ("иммуномодуляторы").

1. Препараты, стимулирующие иммунологические процессы;

2. Иммунодепрессивные препараты (иммуносупресоры).

X. Препараты различных фармакологических групп.

1. Анорексигенные вещества (вещества, угнетающие аппетит);

2. Специфические антидоты, комплексоны;

3. Препараты для профилактики и лечения синдрома лучевой болезни;

4. Фотосенсибилизирующие препараты;

5. Специальные средства для лечения алкоголизма.

1. Химотерапевтические средства;

2. Антисептические средства.

XII. Препараты, применяемые для лечения злокачественных новоообразований.

1. Химотерапевтические средства.

2. Ферментные препараты, применяемые для лечения онкологических заболеваний;

3. Гормональные препараты и ингибиторы образования гормонов, применяемые преимущественно для лечения опухолей.

    1. Состав и физические свойства лекарственных веществ

В работе мы решили исследовать свойства лекарственных веществ, входящих в состав наиболее часто применяемых лекарственных препаратов и являющихся обязательными любой домашней аптечки.

Анальгин

В переводе, слово "анальгин" означает отсутствие боли. Трудно найти человека, который не принимал анальгин. Анальгин - главный препарат в группе ненаркотических анальгетиков - препаратов, способных уменьшать боль без влияния на психику. Уменьшение боли - не единственный фармакологический эффект анальгина. Способность уменьшать выраженность воспалительных процессов и способность снижать повышенную температуру тела - не менее ценны (жаропонижающий и противовоспалительный эффект). Тем не менее, анальгин редко используют с противовоспалительной целью, для этого есть куда более эффективные средства. А вот при лихорадке и боли он в самый раз.

Метамизол (анальгин) в течение многих десятилетий был в нашей стране препаратом скорой помощи, а не средством для лечения хронических заболеваний. Таким он и должен оставаться.

Анальгин синтезирован в 1920 г. в поисках легко растворимой формы амидопирина. Это третье основное направление в разработке болеутоляющих средств. Анальгин, как утверждает статистика, один из самых любимых препаратов, а главное - всем доступен. Хотя на самом деле ему совсем немного лет - всего около 80. Анальгин специалисты разработали специально, чтобы бороться с сильной болью. И действительно, немало людей он избавил от мучений. Применялся он в качестве доступного обезболивающего средства, поскольку широкого ассортимента средств против боли в то время не было. Конечно, использовались наркотические анальгетики, но медицина того времени уже располагала достаточными данными о , и эта группа средств применялась только в соответствующих случаях. Препарат Анальгин имеет большую популярность в медицинской практике. Уже одно название говорит о том, Анальгин от чего помогает и в каких случаях применяется. Ведь в переводе оно означает "отсутствие боли". Анальгин относится к группе безнаркотических анальгетиков, - т.е. препаратов, способных уменьшать боль без влияния на психику.

В клиническую практику анальгин (метамизол натрия) был впервые внедрен в Германии в 1922 году. Анальгин стал незаменимым для госпиталей Германии во время Второй Мировой войны. В течение многих лет он оставался очень популярным лекарственным средством, но эта популярность имела и обратную сторону: широкое и практически бесконтрольное его применение как безрецептурного препарата привело в 70-х гг. прошлого века к смертельным исходам от агранулоцитоза (иммунное заболевание крови) и шока. Это привело к тому, что анальгин был запрещен в ряде стран, в то время как в других он оставался доступным как безрецептурное средство. Риск серьезных побочных эффектов при использовании комбинированных препаратов, содержащих метамизол, выше, чем при приеме "чистого" анальгина. Поэтому в большинстве стран подобные средства были изъяты из обращения.

Торговое наименование: а нальгин.
Международное наименование: Метамизол натрий (Metamizole sodium).
Групповая принадлежность: Анальгетическое ненаркотическое средство.
Лекарственная форма: капсулы, раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки, таблетки [для детей].

Химический состав и физико-химические свойства анальгина

Анальгин. Analginum.

Метамизол натрий.Metamizolum natricum

Химическое название: 1-фенил–2,3-диметил-4–метил-аминопиразолон-5-N-метан - сульфат натрия

Брутто-формула: C 13 H 18 N 3 NaO 5 S

Рис.1

Внешний вид: бесцветные игольчатые кристаллы горьковатого вкуса без запаха.

Парацетамол

В 1877 году Хармон Норзроп Морз синтезировал парацетамол в Университете Джонса Хопкинса в реакции восстановления р-нитрофенола оловом в ледяной уксусной кислоте, но только в 1887 году клинический фармаколог Джозеф фон Меринг испытал парацетамол на пациентах. В 1893 году фон Меринг опубликовал статью, где сообщалось о результатах клинического применения парацетамола и фенацетина, другого производного анилина. Фон Меринг утверждал, что, в отличие от фенацетина, парацетамол обладает некоторой способностью вызывать метгемоглобинемию. Парацетамол затем был быстро отвергнут в пользу фенацетина. Продажи фенацетина начала Bayer как лидирующая в то время фармацевтическая компания. Внедрённый в медицину Генрихом Дрезером в 1899 году, фенацетин был популярен на протяжении многих десятилетий, особенно в широко рекламируемой безрецептурной «микстуре от головной боли», обычно содержащей фенацетин, аминопириновое производное аспирина, кофеин, а иногда и барбитураты.

Торговое название: Парацетамол

Международное название: парацетамол

Групповая принадлежность: анальгезирующее ненаркотическое средство.

Лекарственная форма: таблетки

Химический состав и физико-химические свойства парацетамола

Парацетамол. Paracetamolum.

Брутто - формула: C 8 H 9 NO 2 ,

Химическое название: N-(4-Гидроксифенил) ацетамид.

Внешний вид: белый или белый с кремовым или Рис.2 розовым оттенком кристаллический порошок. Легко оенш679к969 растворим в спирте, нерастворим в воде.

Аспирин (ацетисалициловая кислота)

Аспирин впервые был синтезирован в 1869 году. Это один из самых известных и широко использующихся препаратов. Оказалось, что история аспирина является типичной для многих других лекарств. Ещё в 400 году до нашей эры греческий врач Гиппократ рекомендовал пациентам для избавления от боли жевать ивовую кору. Он, конечно, не мог знать о химическом составе обезболивающих компонентов, однако это были производные ацетилсалициловой кислоты (химики выяснили это лишь двумя тысячелетиями позже). В 1890 г. Ф.Хоффман, работавший в немецкой фирме «Байер», разработал метод синтеза ацетилсалициловой кислоты – основы аспирина. На рынок аспирин был выпущен в 1899 году, а с 1915 года стал продаваться без рецептов. Механизм обезболивающего действия был открыт лишь в 1970 –ых годах. Последние годы аспирин стал средством для профилактики сердечнососудистых заболеваний.

Торговое название : Аспирин.

Международное название : ацетилсалициловая кислота.

Групповая принадлежность : нестероидный противовоспалительный препарат .

Лекарственная форма: таблетки.

Химический состав и физико-химические свойства аспирина

Ацетилсалициловая кислота. Acidum acetylsalicylicum

Брутто – формула: С 9 Н 8 О 4

Химическое название: 2-ацетокси-бензойная кислота.

Внешний вид : ч истое вещество представляет Рис.3 собой белый кристаллический порошок, почти не обладающий словарь запахом, кислый на вкус.

Дибазол

Дибазол создавался в Советском Союзе еще в середине прошлого века. Впервые данное вещество было отмечено в 1946 г. как наиболее активная в физиологическом плане соль Бензимидазола. В ходе проводившихся опытов на лабораторных животных была замечена способность нового вещества улучшать передачу нервных импульсов в спинном мозге. Эта способность подтвердилась в ходе клинических испытаний, и препарат в начале 50-х г. был внедрен в клиническую практику для лечения заболеваний спинного мозга, в частности – полиомиелита. Сейчас используется как средство для укрепления иммунитета, улучшения метаболизма и повышения выносливости.

Торговое название: Дибазол.

Международное название :Дибазол. 2-ое:Бензилбензимидазола гидрохлорид.

Групповая принадлежность : препарат группы периферических вазодилататоров.

Лекарственная форма : раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки.

Химический состав и физико-химические свойства: Дибазол

Хорошо растворяется в воде, но плохо растворяется в спирте.

Брутто-формула : C 14 H 12 N 2 .

Химическое название : 2-(Фенилметил)-1H-бензимидазол.

Внешний вид : производное Бензимидазола,

Рис.4 представляет собой белый, бело- желтый или

светло-серый кристаллический порошок.

    1. Физиологическое и фармакологическое действие лекарственных препаратов

Анальгин.

Фармакологические свойства:

Анальгин относится к группе нестероидных противовоспалительных препаратов, эффективность которого обусловлена активностью метамизола натрия, который:

    Блокирует прохождение болевых импульсов по пучкам Голля и Бурдаха;

    Значительно повышает теплоотдачу, что обусловливает целесообразность использования при высокой температуре Анальгина;

    Способствует увеличению порога возбудимости таламических центров болевой чувствительности;

    Оказывает слабовыраженное противовоспалительное действие;

    Способствует некоторому спазмолитическому эффекту.

Активность Анальгина развивается примерно через 20 минут после приема, достигая максимума через 2 часа.

Показания к применению

Согласно инструкции, Анальгин применяется для устранения болевого синдрома, провоцируемого такими заболеваниями, как :

    Артралгия;

    Кишечная, желчная и почечная колика;

    Ожоги и травмы;

    Опоясывающий лишай;

    Невралгия;

    Декомпрессионная болезнь;

    Миалгия;

    Альгодисменорея и др.

Эффективным является использование Анальгина для устранения зубной и головной боли, а также послеоперационного болевого синдрома. Кроме того, препарат применяется при лихорадочном синдроме, вызванном укусами насекомых, инфекционно-воспалительными заболеваниями или посттрансфузионными осложнениями.

Для устранения воспалительного процесса и снижения температуры Анальгин применяется редко, так как для этого существуют более эффективные средства.

Парацетамол

Фармакологические свойства:

парацетамол быстро и почти полностью абсорбируется из желудочно-кишечного тракта. Связывается с белками плазмы на 15 %. Парацетамол проникает через гематоэнцефалический барьер. Менее 1 % от принятой кормящей матерью дозы парацетамола проникает в грудное молоко. Парацетамол подвергается метаболизму в печени и выделяется с мочой, главным образом, в виде глюкуронидов и сульфированных конъюгатов, менее 5 % выделяется в неизменном виде с мочой.

Показания к применению

    для быстрого облегчения головной боли, включая мигренозную боль;

    зубной боли;

    невралгии;

    мышечной и ревматической боли;

    а также при альгодисменореях, боли при травмах, ожогах;

    для снижения повышенной температуры при простудных заболеваниях и гриппе.

Аспирин

Фармакологические свойства:

Ацетилсалициловая кислота (АСК) обладает обезболивающим, жаропонижающим и противовоспалительным действием, что обусловлено ингибированием энзимов циклоксигеназ, участвующих в синтезе простагландинов.

АСК в диапазоне доз от 0,3 до 1,0 г применяется для снижения температуры при таких заболеваниях, как простуда и , и для облегчения суставных и мышечных болей.
АСК ингибирует агрегацию тромбоцитов, блокируя синтез тромбоксана А
2 в тромбоцитах.

Показания к применению

    для симптоматического облегчения головной боли;

    зубной боли;

    боли в горле;

    боли в мышцах и суставах;

    боли в спине;

    повышенная температура тела при простудных и других инфекционно-воспалительных заболеваниях (у взрослых и детей старше 15 лет)

Дибазол

Фармакологические свойства

Вазодилатирующее средство; обладает гипотензивным, сосудорасширяющим действием, стимулирует функцию спинного мозга, обладает умеренной иммуностимулирующей активностью. Оказывает непосредственное спазмолитическое действие на гладкие мышцы кровеносных сосудов и внутренних органов. Облегчает синаптическую передачу в спинном мозге. Вызывает расширение (непродолжительное) мозговых сосудов и поэтому особенно показан при формах артериальной гипертензии, обусловленных хронической гипоксией мозга из-за местных нарушений кровообращения (склероз церебральных артерий). В печени дибазол подвергается метаболическим превращениям путем метилирования и карбоксиэтилирования с образованием двух метаболитов. Преимущественно выводится почками, и в меньшей степени – через кишечник.

Показания к применению

    Различные состояния, сопровождающиеся артериальной гипертензией, в т.ч. и гипертоническая болезнь, гипертонические кризы;

    Спазм гладкой мускулатуры внутренних органов (кишечная, печеночная, почечная колика);

    Остаточные явления полиомиелита, паралич лицевого нерва, полиневриты;

    Профилактика вирусных инфекционных заболеваний;

    Повышение устойчивости организма к внешним неблагоприятным воздействиям.

    1. Выводы к главе 1

1) Выявлено, что учение о лекарствах является одной из самых древних медицинских дисциплин. Лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Первые лекарства были в основном растительного происхождения. Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ.

2) Установлено, что лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение;

фармакологические средства;

химические соединения.

3) Рассмотрен химический состав и физические свойства препаратов анальгина, парацетамола и аспирина, являющихся незаменимыми в домашней аптечке. Установлено что лекарственные вещества данных препаратов представляют собой сложные производные ароматических углеводородов и аминов.

4) Показаны фармакологические свойства исследуемых препаратов, а также показания к их применению и физиологическое действие на организм. Чаще всего данные лекарственные вещества используются как жаропонижающие и болеутоляющие.

Глава 2. Практическая часть. Исследование качества лекарственных препаратов

2.1. Качество лекарственных препаратов

В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

Понятия «фальсификат», «контрафакт» и «подделка» юридически имеют определенные различия, но для обычного гражданина они идентичны.. Под поддельным понимается лекарственное средство, произведенное с изменением его состава, при сохранении внешнего вида, и часто сопровождаемое ложной информацией о его составе. Контрафактным считается лекарственное средство, производство и дальнейшая продажа которого осуществляется под чужими индивидуальными признаками (товарным знаком, наименованием или местом происхождения) без разрешения патентодержателя, что является нарушением прав интеллектуальной собственности.

Фальсифицированное лекарственное средство часто расценивается как поддельное и контрафактное. В Российской Федерации фальсифицированным считается лекарственное средство, которое признается таковым Росздравнадзором после тщательной проверки с опубликованием соответствующей информации на сайте Росздравнадзора. Со дня публикации обращение ФЛС должно быть прекращено с изъятием из торговой сети и помещением вкарантинную зону отдельно от других лекарств. Перемещение данного ФЛС является нарушением.

Фальсификация лекарств считается четвертым злом здравоохранения после малярии, СПИДа и курения. В своем большинстве фальсификаты не соответствуют по качеству, эффективности или побочным действиям оригинальным препаратам, нанося непоправимый вред здоровью больного человека; производятся и распространяются без контроля соответствующих органов, причиняя огромный финансовый вред законным производителям лекарств и государству. Смерть от ФЛС входит в первую десятку причин гибели людей.

Специалисты выделяют четыре основных типа поддельных лекарств.

1-й тип - «лекарства-пустышки». В этих «лекарствах», как правило, отсутствуют основные лечебные компоненты. Принимающие их не ощущают разницы и даже на ряд пациентов прием «пустышек» может за счет плацебо- эффекта оказывать позитивное воздействие.

2-й тип - «лекарства-имитаторы». В таких «лекарствах» используются более дешевые и менее эффективные, чем в подлинном лекарственном средстве активные компоненты. Опасность заключается в недостаточной концентрации активных веществ, в которых нуждаются пациенты.

3-й тип - «измененные лекарства». В этих «лекарствах» содержится такое же активное вещество, как и в оригинальном средстве, но в больших или меньших количествах. Естественно, что применение подобных средств небезопасно, потому что может привести к усилению побочных эффектов (особенно при передозировке).

4-й тип - «лекарства-копии». Они относятся к наиболее распространенным в России типам фальсифицированных средств (до 90 % от общего числа подделок), выпускаемым обычно подпольными производствами и по тем или иным каналам попадающим в партии легальных средств. Эти препараты содержат такие же активные компоненты, как легальные средства, но при этом отсутствуют гарантии качества лежащих в их основе субстанций, соблюдения норм технологических процессов производства и пр. Следовательно, повышен риск последствий приема подобных препаратов

Правонарушители привлекаются к административной ответственности, предусмотренной ст. 14.1 КоАП РФ, либо к уголовной, ответственность за которое, в связи с отсутствием в уголовном кодексе ответственности за фальсификацию, наступает по нескольким составам преступлений и в основном квалифицируется как мошенничество (ст. 159 УК РФ) и незаконное использование товарного знака (ст. 180 УК РФ).

Федеральный закон «О лекарственных средствах» дает правовое основание для изъятия и уничтожения ФЛС как производимых в России и 15ввозимых из-за рубежа, так и находящихся в обращении на отечественном фармрынке.

Часть 9 статьи 20, устанавливает запрет на ввоз на территорию России лекарственных средств, являющихся подделками, незаконными копиями или фальсифицированными лекарственными средствами. Таможенные органы обязаны конфисковать и уничтожить их в случае обнаружения.

Ст. 31, устанавливает запрет на продажу лекарственных, пришедших в негодность, имеющих истекший срок годности или признанных фальсифицированными. Они также подлежат уничтожению. Минздрав России своим приказом от 15.12.2002 г. № 382 утвердил Инструкцию о порядке уничтожения лекарственных средств, пришедших в негодность, лекарственных средств с истекшим сроком годности и лекарственных средств, являющихся подделками или незаконными копиями. Но в инструкцию до сих пор не внесли изменения в соответствии с дополнениями в ФЗ «О лекарственных средствах» от 2004 г. о фальсифицированных и недоброкачественных лекарственных средств, где теперь дано определение и указано на запрет их обращения и изъятие из оборота, а также предложено государственным органам привести нормативные правовые акты в соответствие с данным законом.

Росздравнадзор издал письмо № 01И-92/06 от 08.02.2006 «Об организации работы территориальных Управлений Росздравнадзора с информацией о недоброкачественных и фальсифицированных лекарственных средствах», которое противоречит правовым нормам Закона о лекарственных средствах и сводит на нет борьбу с фальсификатом. Закон предписывает изымать из обращения и уничтожать фальсифицированные лекарственные средства, а Росздравнадзор (абзац 4 п. 10) предлагает территориальным Управлениям контролировать изъятие из обращения и уничтожение фальсифицированных лекарственных средств. Предлагая 16 осуществлять контроль только за возвратом собственнику или владельцу для дальнейшего уничтожения, Росздравнадзор разрешает продолжить обращение фальсифицированных лекарственных средств и вернуть их собственнику, то есть самому преступнику-фальсификатору, что грубо нарушает Закон и Инструкцию по уничтожению. При этом часто идут ссылки на Федеральный закон от 27.12.2002 г. № 184-ФЗ «О техническом регулировании», в ст. 36-38 которого установлен порядок возврата изготовителю либо продавцу продукции, не соответствующей требованиям технического регламента. Однако необходимо иметь в виду, что этот порядок не распространяется на фальсифицированные лекарственные средства, которые производятся без соблюдения технического регламента, неизвестно кем и где.

С 1 января 2008 г. в соответствии со ст. 2 Федерального закона от 18.12.2006 г. № 231-ФЗ «О введении в действие части четвертой Гражданского кодекса Российской Федерации» вступило в силу новое законодательство о защите интеллектуальной собственности, к объектам которой относятся средства индивидуализации, в том числе и товарные знаки, с помощью которых производители лекарственных средств, защищают права на свою продукцию. В Четвертой части Гражданского Кодекса РФ (ч. 4 ст. 1252) дано определение контрафактным материальным носителям результатов интеллектуальной деятельности и средств индивидуализации

Фармацевтическая отрасль России сегодня нуждается в тотальном научно-техническом перевооружении, так как ее основные фонды изношены. Необходимо внедрение новых стандартов, в том числе и ГОСТ Р 52249- 2004, без которых производство высококачественных лекарственных средств не возможно.

2.2. Качество лекарственных препаратов.

Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из методических разработок для учащихся в медицинских колледжах и в Интернете).

Реакции с препаратом анальгин.

Определение растворимости анальгина.

1 .Растворили 0,5 таблетки анальгина (0,25 г) в 5 мл воды, а вторую половину таблетки в 5 мл этилового спирта.


Рис.5 Взвешивание препарата Рис.6 Измельчение препарата

Вывод: анальгин хорошо растворился в воде, однако практически не растворился в спирте.

Определение наличия группы СН 2 SO 3 Na .

    Нагрели 0,25 г препарата (полтаблетки) в 8 мл разбавленной соляной кислоты.

Рис.7 Нагревание препарата

Обнаружили: сначала запах сернистого ангидрида, затем формальдегида.

Вывод: данная реакция позволяет доказать, что в состав анальгина входит группа формальдегидсульфоната.

    Определение свойств хамелеона

1 мл полученного раствора анальгина добавляли 3-4 капли 10 % раствора хлорида железа (III ). При взаимодействии анальгина с Fe 3+ образуются продукты окисления,

окрашенные в синий цвет, который потом переходит в темно-зеленый, а далее оранжевый, т.е. проявляет свойства хамелеона. Это означает, что препарат качественный.

Для сравнения мы взяли препараты с разными сроками годности и выявили, с помощью указанной выше методики качество препаратов.


Рис.8 Появление свойства хамелеона

Рис.9 Сравнение образцов препаратов

Вывод: реакция с препаратом более позднего срока производства протекает по принципу хамелеона, что свидетельствует о его качестве. А препарат более раннего производства не проявил это свойство, из этого следует, что данный препарат использовать по назначению нельзя.

4.Реакция анальгина с гидроперитом.(«Дымовая шашка»)

реакция идет сразу по двум местам: по сульфогруппе и метиламиниловой группировке. Соответственно, по сульфогруппе может образоываться сероводород, а также вода и кислород

-SO3 + 2H2O2 = H2S + H2O + 3O2.

Образующаяся вода приводит к частичному гидролизу по связи С - N и отщепляется метиламин, и тоже образуется вода и кислород:

-N(CH3) + H2O2 = H2NCH3 + H2O +1/2 O2

И наконец становится понятным, что за дым получается в этой реакции:

Сероводород взаимодействует с метиламином и получается гидросульфид метиламмония:

H2NCH3 + H2S = HS.

И взвесь его мелких кристалликов в воздухе и создает визуальное ощущение "дыма".

Рис. 10 Реакция анальгина с гидроперитом

Реакции с препаратом парацетамол.

Определение уксусной кислоты


Рис.11 Нагревание раствора парацетамола с соляной кислотой Рис.12 Охлаждение смеси

Вывод: появившийся запах уксусной кислоты означает, что данный препарат действительно является парацетамолом.

Определение фенолпроизводного парацетамола.

    К 1 мл раствора парацетамола добавили несколько капель 10 % -ного раствора хлорида железа (III ).

Рис.13 Появление синего окрашивания

Наблюдали: синее окрашивание, свидетельствует о наличии в составе вещества фенолпроизводного.

    0,05 г вещества вскипятили с 2 мл разбавленной соляной кислоты в течение 1 минуты и прибавили 1 каплю раствора дихромата калия.


Рис.14 Кипячение с соляной кислотой Рис.15 Окисление дихроматом калия

Наблюдали: появление сине-фиолетового окрашивания ,не переходящее в красное.

Вывод: в ходе проведенных реакций был доказан качественный состав препарата парацетамола, и установлено, что он является производным анилина.

Реакции с препаратом аспирин.

Для проведения опыта мы использовали таблетки аспирина изготовленные производственной фармацевтической фабрикой «Фармстандарт-Томскхимфарм». Годен до мая 2016 года.

Определение растворимости аспирина в этаноле.

Внесли в пробирки по 0,1 г лекарственных препаратов и добавили 10 мл этанола. При этом наблюдали частичную растворимость аспирина. Нагрели на спиртовке пробирки с веществами. Сравнили растворимость лекарственных препаратов в воде и этаноле.

Вывод: Результаты эксперимента показали, что аспирин лучше растворяется в этаноле, чем в воде, но выпадает в осадок в виде игольчатых кристаллов. Поэтому недопустимо применение аспирина совместно с этанолом. Следует сделать вывод о недопустимости применения алкогольсодержащих лекарств совместно с аспирином, а тем более с алкоголем.

Определение фенолпроизводного в аспирине.

В стакане смешали 0,5 г ацетилсалициловой кислоты, 5 мл раствора гидроксида натрия и прокипятили смесь в течение 3 минут. Реакционную смесь охладили и подкислили разбавленным раствором серной кислоты до выпадения белого кристаллического осадка. Отфильтровали осадок, часть его перенесли в пробирку, прилили к нему 1 мл дистиллированной воды и добавили 2-3 капли раствора хлорида железа.

Гидролиз сложноэфирной связи приводит к образованию фенолпроизводного, которое с хлоридом железа (3) дает фиолетовое окрашивание.


Рис.16 Кипячение смеси аспирина Рис.17 Окисление раствором Рис.18 Качественная реакция

с гидроксидом натрия серной кислоты на фенолпроизводное

Вывод: при гидролизе аспирина образуется фенолпроизводное, которое дает фиолетовое окрашивание.

Фенолпроизводное - это очень опасное для здоровья человека вещество, которое влияет на появление побочных эффектов на организм человека, при приеме ацетилсалициловой кислоты. Поэтому необходимо строго соблюдать инструкции по применению(данный факт упоминался еще в 19 веке).

2.3. Выводы к главе 2

1) Установлено, что в настоящее время создается огромное количество лекарственных веществ, но также много подделки. Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье. Качество лекарственных препаратов определено ГОСТ Р 52249 – 09. В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

2) Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из учебно-методического пособия для студентов химических и биологических специальностей).

3) В ходе проведенного эксперимента был доказан качественный состав препаратов анальгина, дибазола, парацетамола, аспирина и количественный состав анальгина. Результаты и более подробные выводы приведены в тексте работы в главе 2.

Заключение

Целью данного исследования было познакомиться со свойствами некоторых лекарственных веществ и установить их качество с помощью химического анализа.

Я провела анализ литературных источников с целью установления состава изучаемых лекарственных веществ, входящих в состав анальгина, парацетамола, аспирина, их классификации, химических, физических и фармацевтических свойств. Нами была подобрана методика, подходящая для установления качества выбранных лекарственных препаратов в аналитической лаборатории. Проведены исследования качества лекарственных препаратов по выбранной методике качественного анализа.

На основе проделанной работы было выяснено, что все лекарственные вещества соответствуют качеству ГОСТ.

Конечно, невозможно рассмотреть все многообразие лекарственных средств, их действие на организм, особенности применения и лекарственные формы этих препаратов, являющихся обычными химическими веществами. Более подробное знакомство с миром лекарств ждет тех, кто в дальнейшем будет заниматься фармакологией и медициной.

Также хочется добавить, что несмотря на бурное развитие фармакологической индустрии, учёным до сих пор не удалось создать ни одного лекарства без побочных эффектов. Об этом надо помнить каждому из нас: потому что, почувствовав недомогание, мы в первую очередь идём к врачу, потом – в аптеку, и начинается процесс лечения, который часто выражается в бессистемном приёме лекарств.

Поэтому в заключение хочется привести рекомендации по применению лекарственных препаратов:

    Лекарственные препараты необходимо правильно хранить, в специальном месте, подальше от источников света и тепла, согласно температурному режиму, который обязательно указывается производителем (в холодильнике или при комнатной температуре).

    Лекарственные препараты необходимо хранить в недоступных для детей местах.

    В аптечке не должно оставаться неизвестное лекарство. Каждая баночка, коробочка или пакетик должны быть подписаны.

    Нельзя использовать лекарства, если у них истек срок годности.

    Не принимайте препараты, назначенные другому человеку: хорошо переносимые одними, они могут вызвать лекарственную болезнь (аллергию) у других.

    Строго соблюдайте правила приема препарата: время приема (до или после еды), дозировки и интервал между приемами.

    Принимайте только те лекарства, которые вам прописал лечащий врач.

    Не спешите начинать с лекарств: иногда достаточно выспаться, отдохнуть, подышать свежим воздухом.

Соблюдая даже эти немногие и несложные рекомендации по применению лекарственных препаратов, Вы сможете сохранить главное – здоровье!

Библиографический список.

1) Аликберова Л.Ю.Занимательная химия: Книга для учащихся, учителей и родите-лей. –М.:АСТ-ПРЕСС, 2002.

2) Артеменко А.И. Применение органических соединений. – М.: Дрофа, 2005.

3) Машковский М.Д. Лекарственные средства. М.: Медицина, 2001.

4) Пичугина Г.В.Химия и повседневная жизнь человека. М.: Дрофа, 2004.

5) Справочник Видаль: Лекарственные препараты в России: Справочник.- М.: Астра-ФармСервис.- 2001.- 1536 с.

6) Тутельян В.А. Витамины: 99 вопросов и ответов.- М.- 2000.- 47 с.

7) Энциклопедия для детей, том 17. Химия. - М. Аванта+, 200.-640с.

8) Регистр лекарственных средств России "Энциклопедия лекарств".- 9-й вып.- ООО М; 2001.

9) Машковский М.Д. Лекарства ХХ века. М.: Новая волна, 1998, 320 с.;

10) Дайсон Г., Мей П. Химия синтетических лекарственных веществ. М.: Мир, 1964, 660 с.

11)Энциклопедия лекарств 9 выпуск 2002 года. Лекарственные средства М.Д. Машковский 14 издание.

12) http :// www . consultpharma . ru / index . php / ru / documents / proizvodstvo /710- gostr -52249-2009- part 1? showall =1

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РФ

Анализ сложных лекарственных форм

Ч. 1. Лекарственные формы аптечного производства

Учебное пособие

Для самостоятельной подготовки и руководство к лабораторным занятиям по фармацевтической химии для студентов фармацевтических факультетов вузов очной и заочной формы обучения

УДК 615.07 (071) ББК Р 282 Е 732

Е.В. Ермилова, В.В. Дудко, Т.В. Кадырова Анализ сложных лекарственных форм Ч. 1. Лекарственные формы аптечного производства: Уч. пособие. – Томск: Изд. 20012 . – 169 с.

Пособие содержит методики анализа лекарственных форм аптечного производства. В нем рассмотрены терминологии, классификации лекарственных форм, приведены нормативные документы, контролирующие качество лекарственных средств аптечного производства, указаны особенности внутриаптечного экспресс-анализа; подробно излагаются основные этапы анализа лекарственных форм, при этом, особое внимание уделяется химическому контролю.

Основная часть пособия посвящена изложению материала по анализу лекарственных форм: жидких (микстуры, стерильные) и твердых (порошки), приведены многочисленные примеры.

В приложение вынесены выписки из приказов, рефрактометрические таблицы, информация по индикаторам, формы отчетных журналов.

Для студентов фармацевтических факультетов высших учебных заведений.

Табл. 21. Илл. 27. Библиогр.: 18 назв.

Предисловие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации. . . . . . . . . . . . . . . . ………. 5 1.1.1. Термины, характеризующие лекарственные средства.. ….5 1.1.2. Термины, характеризующие лекарственные формы. . . ….5 1.2. Классификация лекарственных форм. . . . . . . . . . . . . . . . . . . . . . 7

1.3. Нормативные документы и требования к качеству лекарственных средств аптечного производства. . . . . . . . . . . . . …...7 1.4. Особенности экспресс-анализа лекарственных средств аптечного производства. . . . . . . . . . . . . . . . . . . . . . . . . . ……………8

1.4.1. Особенности определения подлинности экспресс-методом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………..9

1.4.2. Особенности количественного экспресс-анализа. . . . . . . . …9

2.1. Органолептический и физический контроль. . . . . . . . . . . . . . . . . . 10 2.1.1. Органолептический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.1.2. Физический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.2.Химический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1.Испытания на подлинность. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.2.. Количественный анализ. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 14

2.2.2.1. Способы выражения концентраций. . . . . . . . . . . . . . . . .15 2.2.2.2. Методы титриметрического анализа. . . . . . . . . . . . . . . 16 2.2.2.3. Расчет массы (объема) лекарственной формы и объема титранта для анализа. . . . . . . . . . . . . . . . . . . . . 17

2.2.2.4. Обработка результатов измерений. . . . . . . . . . . . . . . . . .19 2.2.2.5. Оформление результатов анализа. . . . . . . . . . . . . . . . . . 32

III. АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

Жидкие лекарственные формы . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.1. Анализ микстур. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .33 3.2. Анализ стерильных лекарственных форм. . . . . . . . . . . . . . . . . . . . .59

Твердые лекарственные формы

3.3. Порошки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Вопросы контроля самоподготовки. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Тестовый контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Ответы тестового контроля. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

ПРИЛОЖЕНИЯ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Предисловие

Основой для написания учебного пособия явилась программа по фармацевтической химии для студентов фармацевтических вузов (факультетов)

М.: ГОУ ВУНМЦ, 2003 г.

Одной из составных частей фармацевтического анализа является анализ лекарственных средств аптечного и заводского производства, осуществляемый методами фармакопейного анализа, по требованиям различных указаний,

пособий, инструкций и т. п.

Учебное пособие посвящено методам исследования лекарственных форм

(микстуры, стерильные, порошки), изготавливаемых в аптеке, где используются все виды внутриаптечного контроля, но самым действенным является химический контроль, который дает возможность проверить соответствие изготовленной лекарственной формы рецептурной прописи, как по подлинности, так и по количественному содержанию. Приведенные методики определения подлинности и количественного содержания составлены таким образом, чтобы использовать оптимальные методы исследования, и на анализ затрачивалось минимальное количество лекарственного средства.

В основной части приведены многочисленные примеры использования рефрактометрии в количественном анализе лекарственных средств, так как этот метод широко используется в аптечной практике.

Предложенное учебное пособие способствует развитию у студентов химического аналитического мышления.

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации

1.1.1. Термины, характеризующие лекарственные средства

Лекарственные средства – вещества, применяемые для профилактики,

диагностики, лечения болезни, предотвращения беременности, полученные из

биологических технологий.

Лекарственное вещество - лекарственное средство, представляющее собой индивидуальное химическое соединение или биологическое вещество.

Лекарственный препарат - лекарственное средство в виде определенной

лекарственной формы.

Лекарственная форма - придаваемое лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при котором достигается необходимый лечебный эффект.

1.1.2. Термины, характеризующие лекарственные формы

Порошки твердая лекарственная форма для внутреннего и наружного применения, состоящая из одного или нескольких измельченных веществ и обладающая свойством сыпучести.

Таблетки – дозированная лекарственная форма, получаемая прессованием лекарственных или смеси лекарственных и вспомогательных веществ, предназначенная для внутреннего, наружного, сублингвального,

имплантационного или парентерального применения.

Капсулы – дозированная лекарственная форма, состоящая из лекарственного средства, заключенного в оболочку.

Мази мягкая лекарственная форма, предназначенная для нанесения на кожу, раны или слизистые оболочки и состоящая из лекарственного вещества и основы.

Пасты - мази с содержанием порошкообразных веществ свыше 20-25%.

Суппозитории дозированная лекарственная форма, твердая при комнатной температуре и расплавляющаяся при температуре тела.

Растворы жидкая лекарственная форма, полученная путем растворения одного или нескольких лекарственных веществ, предназначенных для инъекционного, внутреннего или наружного применения.

Капли жидкая лекарственная форма, предназначенная для внутреннего или наружного применения, дозируемая каплями.

Суспензии жидкая лекарственная форма, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных лекарственных веществ, распределенных в жидкой дисперсионной среде.

Эмульсии однородная по внешнему виду лекарственная форма,

состоящая из взаимно нерастворимых тонко диспергированных жидкостей,

предназначенная для внутреннего, наружного или парентерального применения.

Экстракты – концентрированные извлечения из лекарственного растительного сырья. Различают жидкие экстракты (Extracta fluida); густые экстракты (Extracta spissa) – вязкие массы с содержанием влаги не более 25%;

сухие экстракты (Extracta sicca) – сыпучие массы с содержанием влаги не более

Настои лекарственная форма, представляющая собой водное извлечение из лекарственного растительного сырья или водный раствор сухих или жидких экстрактов (концентратов).

Отвары настои, отличающиеся режимом экстракции.

Аэрозоли лекарственная форма, в которой лекарственные и вспомогательные вещества находятся под давлением газа-вытеснителя

(пропеллента) в аэрозольном баллоне, герметически закрытом клапаном.

1.2. Классификация лекарственных форм

Классификацию лекарственных форм проводят в зависимости от:

1.2.1. Агрегатного состояния Твердые: порошки, таблетки, драже, гранулы и др.

Жидкие : истинные и коллоидные растворы, капли, суспензии, эмульсии,

линименты, и др.

Мягкие : мази, суппозитории, пилюли, капсулы и др.

Газообразные : аэрозоли, газы.

1.2.2. Количества лекарственных веществ

Однокомпонентные

Многокомпонентные

1.2.3. Места изготовления

Заводского

Аптечного

1.2.4. Способа изготовления

Растворы для инъекций Микстуры Глазные капли Отвары Настои Аэрозоли Настои

Гомеопатические средства и т. д.

1.3. Нормативные документы и требования к качеству

лекарственных средств аптечного производства

Вся производственная деятельность аптеки должна быть направлена на обеспечение высококачественного изготовления лекарственных средств.

Одним из важнейших факторов, определяющих качество лекарственных средств, изготовляемых в аптеке, является организация внутриаптечного контроля.

Внутриаптечный контроль – это комплекс мероприятий, направленных на своевременное выявление и предупреждение ошибок, возникающих в процессе изготовления, оформления и отпуска лекарств.

Лекарства аптечного производства подвергаются нескольким видам контроля в зависимости от характера лекарственной формы.

Система внутриаптечного контроля качества лекарственных средств предусматривает проведение предупредительных мероприятий, приемочного, органолептического, письменного, опросного, физического, химического контроля и контроля при отпуске.

Согласно инструкции Министерства здравоохранения Российской Федерации «О контроле качества лекарственных средств, изготовляемых в аптеках» (Приказ № 214 от 16 июля 1997 г.), все лекарственные средства подвергаются внутриаптечному контролю: органолептическому, письменному и контролю при отпуске – обязательно, опросному и физическому – выборочно, а химическому – в соответствии с пунктом 8 данного приказа (смотри приложение).

1.4. Особенности экспресс-анализа лекарственных средств

аптечного производства

Необходимость внутриаптечного контроля обусловлена соответствующими высокими требованиями к качеству лекарственных средств, изготовляемых в аптеках.

Поскольку изготовление и отпуск лекарственных препаратов в аптеках ограничивается сжатыми сроками, оценку их качества осуществляют экспресс– методами.

Основные требования, предъявляемые к экспресс-анализу, расход минимальных количеств лекарственных средств при достаточной точности и чувствительности, простота и быстрота выполнения по возможности без разделения ингредиентов, возможность проведения анализа без изъятия приготовленного лекарственного препарата.

Если не удается выполнить анализ без разделения компонентов, то используют те же принципы разделения, что и при макро-анализе.

1.4.1. Особенности определения подлинности экспресс – методом

Основное отличие определения подлинности экспресс - методом от макро-анализа заключается в использовании малых количеств исследуемых смесей без их разделения.

Анализ выполняют капельным методом в микро-пробирках, фарфоровых чашках, на часовых стеклах, при этом расходуется от 0,001 до 0,01 г порошка или 1 5 капель исследуемой жидкости.

Для упрощения анализа достаточно проведение одной реакции для вещества, причем наиболее простой, например, для атропина сульфата достаточно подтвердить наличие сульфат-иона, для папаверина гидрохлорида – хлорид - иона классическими методами.

1.4.2. Особенности количественного экспресс-анализа

Количественный анализ может быть выполнен титриметрическими или физико-химическими методами.

Титриметрический экспресс-анализ отличается от макро - методов расходом меньших количеств анализируемых препаратов: 0,05 0,1 г порошка или 0,5 2 мл раствора, причем точную массу порошка можно отвешивать на ручных весах; для повышения точности можно использовать разбавленные растворы титрантов: 0,01 0,02 моль/л.

Навеску порошка или объем жидкой лекарственной формы берут с таким расчетом, чтобы на определение расходовалось 1 3 мл раствора титранта.

Из физико-химических методов в аптечной практике широко используется экономичный метод рефрактометрии при анализе концентратов,

полуфабрикатов и других лекарственных форм.

II. ОСНОВНЫЕ ЭТАПЫ ФАРМАЦЕВТИЧЕСКОГО АНАЛИЗА

2.1. Органолептический и физический контроль

2.1.1. Органолептический контроль

Органолептический контроль заключается в проверке лекарственной формы по следующим показателям: внешний вид («Описание»), запах,

однородность, отсутствие механических примесей. На вкус проверяются выборочно, а лекарственные формы, приготовленные для детей – все.

Однородность порошков, гомеопатических тритураций, мазей, пилюль,

суппозиториев проверяется до разделения массы на дозы в соответствии с требованиями действующей Государственной фармакопеи. Проверка осуществляется выборочно у каждого фармацевта в течение рабочего дня с учетом видов лекарственных форм. Результаты органолептического контроля регистрируются в журнале.

2.1.2. Физический контроль

Физический контроль заключается в проверке общей массы или объема лекарственной формы, количества и массы отдельных доз (не менее трех доз),

входящих в данную лекарственную форму.

При этом проверяются:

Каждая серия фасовки или внутриаптечной заготовки в количестве не менее трех упаковок;

Лекарственные формы, изготовленные по индивидуальным рецептам (требованиям), выборочно в течение рабочего дня с учетом всех видов лекарственных форм, но не менее 3% от количества лекарственных форм, изготовленных за день;

В соответствии с ГФ XI методы исследования лекарственных средств подразделяются на физические, физико-химические и химические.

Физические методы. Включают методы определение температуры плавления, затвердевания, плотности (для жидких веществ), показателя преломления (рефрактометрия), оптического вращения (поляриметрия) и др.

Физико-химические методы. Их можно разделить на 3 основным группы: электрохимические (полярография, потенциометрия), хромато- графические и спектральным (УФ- и ИК-спектрофотометрия и фотоколориметрия).

Полярография - метод изучения электрохимических процессов, основанный на установлении зависимости силы тока от напряжения, которое прикладывается к исследуемой системе. Электролиз исследуемых раство- ров проводится в электролизере, одним из электродов которой служит капельный ртутный электрод, а вспомогательным - ртутныш электрод с большой поверхностью, потенциал которого практически не изменяется при прохождении тока небольшой плотности. Полученная полярографическая кривая (полярограмма) имеет вид волны. Вымота волны связана с концентрацией реагирующих веществ. Метод применяется для количественного определения многих органических соединений.

Потенциометрия - метод определения рН и потенциометрическое титрование.

Хроматография - процесс разделения смесей веществ, происходящий при их перемещении в потоке подвижной фазы вдоль неподвижного сорбента. Разделение происходит благодаря различию тех или иныгх физико -химических свойств разделяемые веществ, приводящему к неодинаковому взаимодействию их с веществом неподвижной фазы, следовательно, к различию во времени удерживания слоя сорбента.

По механизму, лежащему в основе разделения, различают адсорбционную, распределительную и ионообменную хроматографию. По способу разделения и применяемой аппаратуре различают хроматографию на колонках, на бумаге в тонком слое сорбента, газовую и жидкостную хроматографию, высокоэффективную жидкостную хроматографию (ВЭЖХ) и др.

Спектральным методы основаны на избирательном поглощении электромагнитного излучения анализируемым веществом. Различают спектрофотометрические методы, основанным на поглощении веществом монохроматического излучения УФ- и ИК-диапазонов, колориметрические и фотоколориметрические методы, основанным на поглощении веществом немонохроматического излучения видимой части спектра.

Химические методы. Основаны на использовании химических реакций для идентификации лекарственные средств. Для неорганических лекарственных средств используют реакции на катионы и анионы, для органических - на функциональным группы, при этом применяются только такие реакции, которым сопровождаются наглядным внешним эффектом: изменением окраски раствора, выделением газов, выпадением осадков и т.д.

С помощью химических методов проводят определение численных показателей масел и эфиров (кислотное число, йодное число, число омыления), характеризующих их доброкачественность.

К химическим методам количественного анализа лекарственных веществ относятся гравиметрический (весовой) метод, титриметрические (объёмным) методы, включающие кислотно - основное титрование в водных и неводных средах, газометрический анализ и количественный элементный анализ.

Гравиметрический метод. Из неорганических лекарственных веществ этим методом можно определять сульфаты, переводя их в нераство- римым соли бария, и силикаты, предварительно прокаливая их до диоксида кремния. Возможно применение гравиметрии для анализа препаратов со - лей хинина, алкалоидов, некоторые витаминов и др.

Титриметрические методы. Это наиболее распространенным в фар - мацевтическом анализе методы, отличающиеся небольшой трудоемкостью и достаточно вымокой точностью. Титриметрические методы можно подразделить на осадительное титрование, кислотно - основное, окислительно - восстановительное, комплексиметрию и нитритометрию. С их помощью количественную оценку производят, проводя определение отдельные элементов или функциональных групп, содержащихся в молекуле лекарственного вещества.

Осадительное титрование (аргентометрия, меркуриметрия, меркуро- метрия и др.).

Кислотно - основное титрование (титрование в водной среде, ацидиметрия - использование в качестве титранта кислоты, алкалиметрия - использование для титрования щелочи, титрование в смешанные растворителях, неводное титрование и др.).

Окислительно-восстановительное титрование (иодометрия, иодхлорометрия, броматометрия, перманганатометрия и др.).

Комплексиметрия. Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с трилоном Б или др. комплексонами. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона.

Нитритометрия. Метод основан на реакциях первичных и вторичных ароматических аминов с нитритом натрия, которые используют в качестве титранта. Первичные ароматические амины образуют с нитритом натрия в кислой среде диазосоединение, а вторичным ароматические амины в этих условиях образуют нитрозосоединения

Газометрический анализ. Имеет ограниченное применение в фармацевтическом анализе. Объектами этого анализа являются два газообразныгх препарата: кислород и циклопропан. Сущность газометрического определения заключается во взаимодействии газов с поглотительными растворами.

Количественный элементный анализ. Этот анализ используют для количественного определения органических и элементорганических со - единений, содержащих азот, галогены, серу, а также мы1шьяк, висмут, ртуть, сурьму и др. элементы.

Биологические методы контроля качества лекарственных веществ. Биологическую оценку качества ЛB проводят по их фармакологической активности или токсичности. Биологические микробиологические методы применяют в тех случаях, когда с помощью физических, химических и физико-химических методов нельзя сделать заключение о доброкачественности ЛC. Биологические испытания проводят на животных кошки, собаки, голуби, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи) и группах клеток (форменные элементы крови, штаммы микроорганизмов и др.). Биологическую активность устанавливают, как правило, путем сравнения действия испытуемых и стандартных образцов.

Испытаниям на микробиологическую чистоту подвергают не стерилизуемые в процессе производства ЛП (таблетки, капсулы, гранулы, растворы, экстракты, мази и др.). Эти испытания имеют своей целью определение состава и количества имеющейся в ЛФ микрофлоры. При этом устанавливается соответствие нормам, ограничивающим микробную обсемененность (контаминацию). Испытание включает количественное определение жизнеспособных бактерий и грибов, выявление некоторых видов микроорганизмов, кишечной флоры и стафилококков. Испытание выполняют в асептических условиях в соответствии с требованиями ГФ XI (в. 2, с. 193) двухслойным агаровым методом в чашках Петри.

Испытание на стерильность основано на доказательстве отсутствия в ЛС жизнеспособных микроорганизмов любого вида и является одним из важнейших показателей безопасности ЛС. Этим испытаниям подвергаются все ЛП для парентерального введения, глазные капли, мази и т.д. Для контроля стерильности применяют биогликолевую и жидкую среду Сабуро, используя метод прямого посева на питательные среды. Если ЛС обладает выраженным антимикробным действием или разлито в емкости более 100 мл, то используют метод мембранной фильтрации (ГФ, в. 2, с. 187).

1.6 Методы фармацевтического анализа и их классификация

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

2.2 Установление рН среды

2.3 Определение прозрачности и мутности растворов

2.4 Оценка химических констант

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

3.2 Гравиметрический (весовой) метод

3.3 Титриметрические (объемные) методы

3.4 Газометрический анализ

3.5 Количественный элементный анализ

Глава 4. Физико-химические методы анализа

4.1 Особенности физико-химических методов анализа

4.2 Оптические методы

4.3 Абсорбционные методы

4.4 Методы, основанные на испускании излучения

4.5 Методы, основанные на использовании магнитного поля

4.6 Электрохимические методы

4.7 Методы разделения

4.8 Термические методы анализа

Глава 5. Биологические методы анализа1

5.1 Биологический контроль качества лекарственных средств

5.2 Микробиологический контроль лекарственных средств

Список использованной литературы

Вступление

Фармацевтический анализ - это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10 -8 -10 -9 % анализируемого вещества, полярографические и флуориметрические 10 -6 -10 -9 %; чувствительность спектрофотометрических методов Ю -3 -10 -6 %, потенциометрических 10 -2 %.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

Так, при вычислении результатов титриметрических определений наименее точная цифра - количество миллилитров титранта, израсходованного на титрование. В современных бюретках в зависимости от класса их точности максимальная ошибка отмеривания около ±0,02 мл. Ошибка от натекания тоже равна ±0,02 мл. Если при указанной общей ошибке отмеривания и натекания ±0,04 мл на титрование расходуется 20 мл титранта, то относительная ошибка составит 0,2%. При уменьшении навески и количества миллилитров титранта точность соответственно уменьшается. Таким образом, титриметрическое определение можно выполнять с относительной погрешностью ±(0,2-0,3)%.

Точность титриметрических определений можно повысить, если пользоваться микробюретками, применение которых значительно уменьшает ошибки от неточного отмеривания, натекания и влияния температуры. Погрешность допускается также при взятии навески.

Отвешивание навески при выполнении анализа лекарственного вещества осуществляют с точностью до ±0,2 мг. При взятии обычной для фармакопейного анализа навески 0,5 г препарата и точности взвешивания ±0,2 мг относительная ошибка будет равна 0,4%. При анализе лекарственных форм, выполнении экспресс-анализа такая точность при отвешивании не требуется, поэтому навеску берут с точностью ±(0,001-0,01) г, т.е. с предельной относительной ошибкой 0,1-1%. Это можно отнести и к точности отвешивания навески для колориметрического анализа, точность результатов которого ±5%.

1.2 Ошибки, возможные при проведении фармацевтического анализа

При выполнении количественного определения любым химическим или физико-химическим методом могут быть допущены три группы ошибок: грубые (промахи), систематические (определенные) и случайные (неопределенные).

Грубые ошибки являются результатом просчета наблюдателя при выполнении какой-либо из операций определения или неправильно выполненных расчетов. Результаты с грубыми ошибками отбрасываются как недоброкачественные.

Систематические ошибки отражают правильность результатов анализа. Они искажают результаты измерений обычно в одну сторону (положительную или отрицательную) на некоторое постоянное значение. Причиной систематических ошибок в анализе могут быть, например, гигроскопичность препарата при отвешивании его навески; несовершенство измерительных и физико-химических приборов; опытность аналитика и т.д. Систематические ошибки можно частично устранить внесением поправок, калибровкой прибора и т.д. Однако всегда необходимо добиваться того, чтобы систематическая ошибка была соизмерима с ошибкой прибора и не превышала случайной ошибки.

Случайные ошибки отражают воспроизводимость результатов анализа. Они вызываются неконтролируемыми переменными. Среднее арифметическое случайных ошибок стремится к нулю при постановке большого числа опытов в одних и тех же условиях. Поэтому для расчетов необходимо использовать не результаты единичных измерений, а среднее из нескольких параллельных определений.

Правильность результатов определений выражают абсолютной ошибкой и относительной ошибкой.

Абсолютная ошибка представляет собой разность между полученным результатом и истинным значением. Эта ошибка выражается в тех же единицах, что и определяемая величина (граммах, миллилитрах, процентах).

Относительная ошибка определения равна отношению абсолютной ошибки к истинному значению определяемой величины. Выражают относительную ошибку обычно в процентах (умножая полученную величину на 100). Относительные ошибки определений физико-химическими методами включают как точность выполнения подготовительных операций (взвешивание, отмеривание, растворение), так и точность выполнения измерений на приборе (инструментальная ошибка).

Значения относительных ошибок находятся в зависимости от того, каким методом выполняют анализ и что представляет собой анализируемый объект - индивидуальное вещество или многокомпонентную смесь. Индивидуальные вещества можно определять при анализе спек- трофотометрическим методом в УФ- и видимой областях с относительной погрешностью ±(2-3)%, ИК-спектрофотометрией ±(5-12)%, газо- жидкостцой хроматографией ±(3-3,5)%; полярографией ±(2-3)%; потенциометрией ±(0,3-1)%.

При анализе многокомпонентных смесей относительная погрешность определения этими методами возрастает примерно в два раза. Сочетание хроматографии с другими методами, в частности использование хроматооптических и хроматоэлектрохимических методов, позволяет выполнять анализ многокомпонентных смесей с относительной погрешностью ±(3-7)%.

Точность биологических методов намного ниже, чем химических и физико-химических. Относительная ошибка биологических определений достигает 20-30 и даже 50%. Для повышения точности в ГФ XI введен статистический анализ результатов биологических испытаний.

Относительная ошибка определения может быть уменьшена за счет увеличения числа параллельных измерений. Однако эти возможности имеют определенный предел. Уменьшать случайную ошибку измерений, увеличивая число опытов, целесообразно до тех пор, пока она станет меньше систематической. Обычно в фармацевтическом анализе выполняют 3-6 параллельных измерений. При статистической обработке результатов определений с целью получения достоверных результатов выполняют не менее семи параллельных измерений.

1.3 Общие принципы испытаний подлинности лекарственных веществ

Испытание на подлинность - это подтверждение идентичности анализируемого лекарственного вещества (лекарственной формы), осуществляемое на основе требований Фармакопеи или другой нормативно-технической документации (НТД). Испытания выполняют физическими, химическими и физико-химическими методами. Непременным условием объективного испытания подлинности лекарственного вещества является идентификация тех ионов и функциональных групп, входящих в структуру молекул, которые обусловливают фармакологическую активность. С помощью физических и химических констант (удельного вращения, рН среды, показателя преломления, УФ- и ИК-спектра) подтверждают и другие свойства молекул, оказывающие влияние на фармакологический эффект. Применяемые в фармацевтическом анализе химические реакции сопровождаются образованием окрашенных соединений, выделением газообразных или нерастворимых в воде соединений. Последние можно идентифицировать по температуре плавления.

1.4 Источники и причины недоброкачественности лекарственных веществ

Основные источники технологических и специфических примесей - аппаратура, исходное сырье, растворители и другие вещества, которые используют при получении лекарственных средств. Материал, из которого изготовлена аппаратура (металл, стекло), может служить источником примесей тяжелых металлов и мышьяка. При плохой очистке в препаратах могут содержаться примеси растворителей, волокна тканей или фильтровальной бумаги, песок, асбест и т.д., а также остатки кислот или щелочей.

На качество синтезируемых лекарственных веществ могут оказывать влияние различные факторы.

Технологические факторы - первая группа факторов, оказывающих влияние в процессе синтеза лекарственного вещества. Степень чистоты исходных веществ, температурный режим, давление, рН среды, растворители, применяемые в процессе синтеза и для очистки, режим и температура сушки, колеблющаяся даже в небольших пределах, - все эти факторы могут привести к появлению примесей, которые накапливаются от одной к другой стадии. При этом могут происходить образование продуктов побочных реакций или продуктов распада, процессы взаимодействия исходных и промежуточных продуктов синтеза с образованием таких веществ, от которых трудно затем отделить конечный продукт. В процессе синтеза возможно также образование различных таутомерных форм как в растворах, так и в кристаллическом состоянии. Так, например, многие органические соединения могут существовать в амидной, имидной и других таутомерных формах. Причем нередко в зависимости от условий получения, очистки и хранения лекарственное вещество может представлять собой смесь двух таутомеров или других изомеров, в том числе оптических, различающихся по фармакологической активности.

Вторая группа факторов - образование различных кристаллических модификаций, или полиморфизм. Около 65% лекарственных веществ, относящихся к числу барбитуратов, стероидов, антибиотиков, алкалоидов и др., образуют по 1-5 и более различных модификаций. Остальные дают при кристаллизации стабильные полиморфные и псевдополиморфные модификации. Они различаются не только по физико-химическим свойствам (температуре плавления, плотности, растворимости) и фармакологическому действию, но имеют различную величину свободной поверхностной энергии, а следовательно, неодинаковую устойчивость к действию кислорода воздуха, света, влаги. Это вызвано изменениями энергетических уровней молекул, что оказывает влияние на спектральные, термические свойства, растворимость и абсорбцию лекарственных веществ. Образование полиморфных модификаций зависит от условий кристаллизации, используемого при этом растворителя, температуры. Превращение одной полиморфной формы в другую происходит при хранении, сушке, измельчении.

В лекарственных веществах, получаемых из растительного и животного сырья, основными примесями являются сопутствующие природные соединения (алкалоиды, ферменты, белки, гормоны и др.). Многие из них очень сходны по химическому строению и физико-химическим свойствам с основным продуктом экстракции. Поэтому очистка его представляет большую сложность.

Большое влияние на загрязнение примесями одних лекарственных препаратов другими может оказать запыленность производственных помещений химико-фармацевтических предприятий. В рабочей зоне этих помещений при условии получения одного или нескольких препаратов (лекарственных форм) все они могут содержаться в виде аэрозолей в воздухе. При этом происходит так называемое "перекрестное загрязнение".

Всемирной организацией здравоохранения (ВОЗ) в 1976 г. были разработаны специальные правила организации производства и контроля качества лекарственных средств, которые предусматривают условия предотвращения "перекрестного загрязнения".

Важное значение для качества лекарств имеют не только технологический процесс, но и условия хранения. На доброкачественность препаратов оказывает влияние излишняя влажность, которая может привести к гидролизу. В результате гидролиза образуются основные соли, продукты омыления и другие вещества с иным характером фармакологического действия. При хранении препаратов-кристаллогидратов (натрия арсенат, меди сульфат и др.) необходимо, наоборот, соблюдать условия, исключающие потерю кристаллизационной воды.

При хранении и транспортировке препаратов необходимо учитывать воздействие света и кислорода воздуха. Под влиянием этих факторов может происходить разложение, например, таких веществ, как хлорная известь, серебра нитрат, иодиды, бромиды и т.д. Большое значение имеет качество тары, используемой для хранения лекарственных препаратов, а также материал, из которого она изготовлена. Последний тоже может быть источником примесей.

Таким образом, примеси, содержащиеся в лекарственных веществах, можно разделить на две группы: примеси технологические, т.е. внесенные исходным сырьем или образовавшиеся в процессе производства, и примеси, приобретенные в процессе хранения или транспортировки, под воздействием различных факторов (теплоты, света, кислорода воздуха и т.д.).

Содержание тех и других примесей должно строго контролироваться, чтобы исключить присутствие токсичных соединений или наличие индифферентных веществ в лекарственных средствах в таких количествах, которые мешают их использованию для конкретных целей. Иными словами, лекарственное вещество должно иметь достаточную степень чистоты, а следовательно, отвечать требованиям определенной спецификации.

Лекарственное вещество является чистым, если дальнейшая очистка не меняет его фармакологической активности, химической стабильности, физических свойств и биологической доступности.

В последние годы в связи с ухудшением экологической обстановки на наличие примесей тяжелых металлов испытывают и лекарственное растительное сырье. Важность проведения таких испытаний вызвана тем, что при проведении исследований 60 различных образцов растительного сырья установлено содержание в них 14 металлов, в том числе таких токсичных, как свинец, кадмий, никель, олово, сурьма и даже таллий. Их содержание в большинстве случаев значительно превышает установленные ПДК для овощей и фруктов.

Фармакопейный тест на определение примесей тяжелых металлов - один из широко применяемых во всех национальных фармакопеях мира, которые рекомендуют его для исследования не только индивидуальных лекарственных веществ, но и масел, экстрактов, ряда инъекционных лекарственных форм. По мнению Комитета экспертов ВОЗ, такие испытания следует проводить в отношении лекарственных средств, имеющих разовые дозы не менее 0,5 г.

1.5 Общие требования к испытаниям на чистоту

Оценка степени чистоты лекарственного препарата - один из важных этапов фармацевтического анализа. Все лекарственные препараты независимо от способа получения испытывают на чистоту. При этом устанавливают содержание примесей. Их

8-09-2015, 20:00


Другие новости

Фармацевтический анализ (ФА). Он является основой фармацевтической химии и имеет свои особенности, отличающие его от других видов анализа. Они заключаются в том, что анализу подвергаются вещества различной химической природы: неорганические, элементоорганические, радиоактивные, органические соединения от простых алифатических до сложных природных БАВ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов.

Ежегодное пополнение арсенала лекарственных средств вызывает необходимость разработки новых способов их анализа. Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований как к качеству лекарственных средств, так и к количественному содержанию в них БАВ. Вот почему к фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативным требованиям Государственной фармакопеи X и XI и другой НТД (ФС, ГОСТ), выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых препаратов и реактивов.

В зависимости от поставленных задач фармацевтический анализ включает различные формы контроля качества лекарственных средств: фармакопейный анализ; постадийный контроль производства лекарств; анализ лекарственных форм индивидуального изготовления; экспресс-анализ в условиях аптеки и биофармацевтический анализ. Составной его частью является фармакопейный анализ, который представляет собой совокупность способов исследований лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой НТД (ФС, ФСП, ГОСТ). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям Государственной фармакопеи или другой НТД. При отклонении от этих требований лекарство не допускается к применению.

Химический анализ растительного сырья. По технике выполнения и характеру получаемых результатов химические реакции делят на несколько групп: качественные, микрохимические и гистохимические, микросублимация.

Для установления подлинности лекарственного растительного сырья используют простейшие качественные реакции и хроматографические пробы на действующие и сопутствующие вещества. Методика изложена в соответствующей нормативной документации на исследуемый вид сырья в разделе «Качественные реакции».

Качественные реакции выполняют на сухом сырье с такими видами сырья: кора дуба, калины, крушины, корневища бадана, корневища и корни девясила, корни одуванчика, алтея, женьшеня, барбариса, цветки липы, семена льна, склероции спорыньи (всего для 12 видов сырья).

В основном качественные реакции проводят с извлечением (вытяжкой) из лекарственного растительного сырья.

Исходя из свойств биологически активных веществ, их извлекают из сырья водой, спиртом различной концентрации или органическим растворителем, реже с добавлением щелочи или кислоты.

Водное извлечение готовят из сырья, содержащего гликозиды, полисахариды, сапонины, фенологликозиды, антрагликозиды, дубильные вещества. Подкисленной водой извлекают из сырья алкалоиды в виде солей.

Большую группу биологически активных веществ (сердечные гликозиды, кумарины, лигнаны, флавоноиды) извлекают этиловым и метиловым спиртом различной концентрации.

Если реакция достаточно специфична и чувствительна, то ее проводят с неочищенным экстрактом из сырья.

К таким реакциям относятся:

общеалкалоидные осадочные реакции;

реакции с раствором хлорида алюминия на флавоноиды (трава зверобоя, горца птичьего, горца перечного и др.);

проба Синода на флавоноиды в цветках бессмертника;

реакция с раствором щелочи на антраценпроизводные (кора крушины, корни ревеня и др.);

реакция с раствором железоаммонийных квасцов на дубильные веществ (кора дуба, корневища змеевика, бадана и др.).

Часто проведению реакции мешают сопутствующие вещества (белки, амины, стерины, хлорофилл). В этом случае используют очищенное извлечение (например, из сырья, содержащего сердечные гликозиды, кумарины, алкалоиды, фенологликозиды, лигнаны).

Очищают извлечение осаждением сопутствующих веществ раствором ацетата свинца и сульфата натрия или используют прием смены растворителей либо метод распределительной хроматографии.

Микрохимические реакции проводят обычно одновременно с микроскопическим анализом, наблюдая результаты под микроскопом:

на эфирное и жирное масло с раствором Судан III;

на одревесневшие лигнифицированные элементы с раствором флороглюцина и 25%-ным раствором серной кислоты или концентрированной хлороводородной кислоты.

На кору дуба (порошок) проводят реакцию с железоаммонийными квасцами и результат реакции изучают под микроскопом.

Гистохимические реакции - это такие реакции, с помощью которых можно выявить те или иные соединения непосредственно в клетках или структурах, где они локализуются.

По Государственной фармакопее XI, гистохимические реакции проводят на слизь с раствором туши в корнях алтея и семенах льна.

Микросублимация - непосредственное выделение из сухого растительного материала веществ, которые легко возгоняются при нагревании. Полученный сублимат исследуют под микроскопом, затем проводят микрохимическую реакцию с соответствующим реактивом.

Методы определения подлинности лекарственного растительного сырья. Подлинность сырья определяется макроскопическим, микроскопическим, химическим и люминесцентным анализами.

Макроскопический анализ. Для его проведения следует знать морфологию растений. Изучают внешний вид сырья невооруженным глазом или с помощью лупы, измеряют размеры частиц с помощью миллиметровой линейки. При дневном освещении определяют цвет сырья с поверхности, на изломе и на разрезе. Запах устанавливают при растирании или разломе растений, а вкус - только у неядовитых растений. При изучении внешнего вида обращают внимание на морфологические признаки частей сырья.

Микроскопический анализ. Используют для определения подлинности измельченного лекарственного растительного сырья. Для этого нужно знать анатомическую структуру растений в целом и характерные для конкретного растения признаки, отличающие его от других растений.

Химический анализ. Предусматривает проведение качественных, микрохимических, гистохимических реакций и сублимации для определения в сырье действующих или сопутствующих веществ. Микрохимические реакции целесообразно проводить параллельно с микроскопическим анализом. Гистохимические реакции проводят для выявления конкретных соединений в местах их локализации в растении. Под сублимацией понимают получение из растительного сырья легко возгоняемых при нагревании веществ с последующей качественной реакцией с сублиматом.

Люминесцентный анализ. Это метод исследования различных объектов (в том числе и биологических), основанный на наблюдении их люминесценции. Люминесценция - свечение газа, жидкости или твердого тела, обусловленное не нагревом тела, а нетепловым возбуждением его атомов и молекул. Люминесцентный анализ проводят для определения в лекарственном сырье веществ, обладающих люминесценцией.

Контроль качества органотерапевтических препаратов. Для проверки соответствия качества желез требованиям стандарта от каждой партии отбирают 5 % ящиков или пакетов, но не менее пяти таких упаковок. Если в одном из вскрытых ящиков или пакетов железы не соответствуют требованиям соответствующего стандарта хотя бы по одному из показателей, то проверяют всю партию.

Для единичных видов сырья имеются объективные (лабораторные) методы оценки его качества.

Объективно качество поджелудочной железы, предназначенной для производства инсулина, согласно ГОСТу, определяют по показателям массовой доли жира и массовой доли инсулина с помощью соответствующих лабораторных методов.

Массовую долю жира определяют жиромером. Массовую долю инсулина проверяют по требованию потребителя иммунореактивным методом с помощью антисыворотки, иммуноглобулинов в гомогенизированной железе.

Качество слизистой оболочки (эпителия) языков крупного рогатого скота проверяют путем определения величины pH консервирующей среды с эпителием и ее бактериальной обсемененности. Сущность метода заключается в определении общего количества микробов в 1 мл консервирующей среды с эпителием.

Качество стекловидного тела глаз крупного рогатого скота, свиней, овец и коз замороженного определяют по количественному содержанию гиалуроновой кислоты (по глюкозамину) в стекловидном теле. Принцип метода основан на определении глюкоза-мина в продуктах гидролиза гиалуроновой кислоты, который является составной частью молекулы гиалуроновой кислоты и находится в прямой зависимости от содержания его в стекловидном теле.

Биологическую активность гипофизов определяют в единицах действия АКТГ, содержащегося в 1 мг кислого ацетонированного порошка (КАП), полученного из гипофизов.

Определение активности АКТГ основано на его способности вызывать редукцию лимфоидной ткани, в частности зобной железы крысят. За единицу действия препарата принимают ту ежедневную дозу препарата, которая при введении в течение пяти суток вызывает уменьшение массы железы на 50±5 %.

Качество паращитовидных желез определяют гистологическим методом. На срезах паращитовидных желез просматриваются скопления эпителиальных клеток с выраженной базофильной зернистостью. На срезах лимфатических желез просматривается ретикулярная ткань (в виде однородной массы), окруженная плотной соединительной оболочкой (капсулой), от которой внутрь отходят ясно видимые соединительные тяжи. Государственным стандартом предусмотрено, что в пробе из 40 желез может содержаться не более одного лимфатического узла.

Методы определения качества сухих биологических препаратов. Сухие биологические препараты имеют ряд преимуществ по сравнению с традиционными жидкими биопрепаратами благодаря лучшему качеству, меньшей массе, возросшему сроку хранения, удобству транспортирования.

Физические методы. 1.Метод определения вакуума. Сущность метода заключается в способности высокочастотного электрического тока при большом напряжении вызывать в газах свечение, характер которого изменяется в зависимости от степени разреженности воздуха в ампуле (флаконе).

Отбор проб. Отбор проб проводят в соответствии с правилами, установленными в государственных стандартах на сухие биологические препараты.

Аппаратура и оборудование. При проведении испытания используют: аппарат типа «Д’Арсеналь» или «Тесла», штатив для ампул, стол металлический.

Проведение испытания. Подготовка к испытанию:

перед испытанием проверяют внешний вид, плотность укупоривания флаконов, наличие трещин, запайку ампул.

Аппарат выдерживают в течение 10 мин после включения. Испытуемые ампулы устанавливают в штативе, затем к ним подводят электрод на расстояние 1 см. При определении вакуума с помощью аппарата «Тесла» один металлический электрод аппарата заземляют через металлический стол, на котором разложены ампулы, а другой подводят к проверяемым ампулам. Экспозиция не более 1 с.

Обработка результатов. Появление свечения внутри ампул с характерным потрескиванием указывает на наличие в них вакуума.

Степень разрежения воздуха в проверяемых ампулах определяют по характеру свечения газов в проверяемых ампулах в соответствии с нижеследующими данными.

Определение степени разрежения воздуха в проверяемых ампулах

2. Метод определения в л а ж н о с т и. Сущность метода заключается в определении уменьшения массы пробы препарата после ее высушивания в течение 1 ч при температуре 105 °С.

Отбор проб. Для испытания из разных мест упаковки отбирают необходимое количество ампул (флаконов) с учетом требований к массе проб (в соответствии со стандартом).

При отборе проб проверяют герметичность ампул. У флаконов с лиофилизированным препаратом проверяют стенку и дно на целостность, а также полноту прилегания закатанного колпачка и резиновой пробки. При наличии дефектов флакон заменяют другим. Каждую ампулу, запаянную под вакуумом, перед извлечением из нее препарата проверяют на герметичность.

Аппаратура, материалы и реактивы. При проведении испытания используют: весы лабораторные, шкаф сушильный лабораторный, термометры ртутные, эксикатор, бюксы стеклянные, вазелин технический, кальций хлористый безводный или гипс обезвоженный, или силикагель прокаленный.

Подготовка к испытанию. Сушильный шкаф проверяют максимальными термометрами на равномерность нагрева.

При высушивании проб в бюксах нижняя часть контрольного термометра должна находиться на уровне бюкс. Показания контрольного термометра являются определяющими для настройки температуры в шкафу.

Весы должны быть установлены на прочном столе без вибрации. Результаты всех взвешиваний регистрируют в граммах с точностью до четвертого десятичного знака.

Нижняя часть эксикатора должна быть заполнена обезвоженным хлористым кальцием или гипсом, или силикагелем. Пришлифованные края сосуда слегка смазывают техническим вазелином.

Для каждого анализа должны быть подготовлены три бюксы одинаковых диаметров и высоты.

Проведение испытания. Для определения влажности используют три ампулы, если в каждой из них масса пробы не менее 0,1 г. Если ампула содержит менее 0,1 г биологического препарата, то можно использовать две и более ампул.

Отобранную пробу, растолченную до порошкообразного состояния, помещают ровным слоем в предварительно взвешенную бюксу.

Бюксы устанавливают в сушильный шкаф на полку. Началом сушки следует считать время достижения температуры 105 °С по контрольному термометру. Продолжительность сушки 60 мин.

После окончания сушки бюксы быстро закрывают крышками и переносят в эксикатор для охлаждения до комнатной температуры, после чего бюксы взвешивают с точностью до четвертого знака и регистрируют по форме.

3. Метод определения количества кислорода. Отбор проб. Отбор проб проводят в соответствии с правилами, установленными в государственных стандартах на сухие биологические препараты.

Аппаратура, материалы и реактивы. При проведении испытания используют: хроматограф газовый марки ЛXM-8МД или других аналогичных марок с детектором по теплопроводимости и газохромографической колонкой диаметром 3 мм и длиной 1000 мм, печь муфельную с температурой нагрева до 1000 °С, измеритель расхода газа с бюреткой, секундомер, шприц медицинский вместимостью 1 см 3 , сетки проволочные тканые, лупу измерительную, эксикатор, ступку фарфоровую, линейку металлическую длиной 30 см, сита молекулярные - цеолит синтетический марки СаА, иглу медицинскую, трубку медицинскую резиновую внутренним диаметром 4,2 мм, длиной 10 м, бутыль вместимостью 3000 см 3 , пробку резиновую, масло силиконовое, гелий, азот газообразный, воду дистиллированную.

Подготовка к испытанию. Подготовка колонки. Синтетический цеолит измельчают в фарфоровой ступке, отсеивают на ситах, промывают дистиллированной водой, высушивают и прокаливают в муфельной печи при температуре 450...500 °С в течение 2 ч, затем охлаждают в эксикаторе на сетках до комнатной температуры.

Хроматографическую колонку устанавливают вертикально и засыпают синтетическим цеолитом. Колонку не досыпают на 1 см и закупоривают сеткой. Заполненную колонку устанавливают в термостате хроматографа и, не присоединяя к детектору, пропускают через нее поток гелия или азота в течение 3 ч при температуре 160... 180 °С. Затем колонку присоединяют к детектору и продолжают через нее пропускать гелий или азот, пока не прекратится дрейф нулевой линии при максимальной чувствительности детектора.

Подготовку хроматографа к работе и включение выполняют в соответствии с заводской инструкцией.

Подготовка флакона с препаратом к испытанию. Для отбора пробы из флакона с препаратом выравнивают давление газа во флаконе с атмосферным давлением.

Подготовка медицинского шприца. Предварительно устанавливают на штоке шприца металлическую трубку и проверяют шприц на герметичность. Проверенным и подготовленным к отбору газа медицинским шприцем с иглой прокалывают резиновую трубку, по которой выходит гелий из колонки сравнения хроматографа, и дважды медленно шприцем набирают и выпускают гелий. В третий раз, набрав гелий в шприц и расположив его иглой вниз, отбирают пробы газа из флакона с препаратом.

Проведение испытания. Из каждого флакона отбирают две пробы газа и последовательно одну за другой с интервалом 3...4 мин вводят в испаритель хроматографа. Пробу в испаритель вводят плавным нажатием пальца на шток. Через 110... 120 с после ввода пробы на хроматограмме самописец вычерчивает пик кислорода, а затем пик азота.

Обработка результатов. Рассчитывают площадь пиков кислорода и азота. Для этого на хроматографе измеряют высоту и ширину пиков кислорода и азота с помощью металлической линейки длиной 30 см, увеличительной лупы и остро заточенного карандаша. Высоту пиков измеряют от базовой линии до вершины пика, ширину пика - на половине его высоты. При измерениях берут расстояние от внутренней толщины линии пика до наружной.

Площадь пиков кислорода (SО 2 , мм 2) и азота (5N 2 , мм 2) вычисляют по формулам

SО 2 = h 1 *b 1 ; SN = h 2 *b 2 ,

где h 1 h 2 ~ высота пиков кислорода и азота, мм; b 1 , b 2 - ширина пиков кислорода и азота, мм.

Объемную долю кислорода (X, %) в каждой пробе газа вычисляют по формуле

X=SO 2 /(SO 2 +SN 2)

где SO 2 , SN 2 - площади пиков кислорода и азота, мм 2 .

За окончательный результат испытания принимают среднее арифметическое результатов определений в трех флаконах препарата.

Относительная приведенная погрешность метода при доверительной вероятности Р- 0,95 не должна превышать 10 %.

Бактериологический метод. Контроль стерильности. Сущность метода заключается в микробиологической оценке отсутствия роста бактерий и грибов в высевах препаратов на питательные среды.

Отбор проб. От каждой серии препаратов отбирают пробы в количестве 0,15 % флаконов, но не менее пяти для жидких и 10 ампул для сухих препаратов.

Подготовка к испытанию. Лабораторную посуду кипятят в течение 15 мин в дистиллированной воде, подкисленной раствором соляной кислоты, а затем промывают водопроводной водой и моют ершом в растворе, содержащем на 1000 см 3 дистиллированной воды 30 г стирального порошка и 50 см 3 водного аммиака. После этого посуду тщательно промывают сначала водопроводной водой, а затем три раза дистиллированной водой, высушивают и стерилизуют.

Перед стерилизацией посуду укладывают в металлические пеналы. Стерилизуют посуду в автоклаве при 0,15 МПа в течение 60 минут.

Готовые питательные среды, проверенные на ростовые свойства, разливают по 6...8 см 3 (для определения анаэробов по 10...12 см 3) в пробирки, по 50...60 см 3 во флаконы вместимостью 100 см 3 .

Пробы сухих биологических препаратов предварительно растворяют стерильным растворителем (изотонический раствор хлорида натрия, дистиллированная вода и т. д.).

Проведение испытания. 1. Проведение испытания на стерильность с использованием тиогликолевой среды.

Из каждого флакона препарата производят посев по 1 см 3 в три пробирки, содержащие тиогликолевую среду.

Две засеянные пробирки выдерживают в термостате в течение 14сут: одну -при температуре 21 °С, другую -при температуре 37 °С.

Третью пробирку выдерживают в течение 7 сут при температуре 37 °С и затем делают из нее пересевы по 0,5 см 3 по одной пробирке на скошенный казеиновый агар, казеиновый питательный бульон, среду Сабуро и по 1 см 3 на казеиновый питательный бульон под вазелиновым маслом с кусочками мяса или печени.

Пересевы на казеиновый агар, мясопептонный бульон выдерживают еще в течение 7 сут при температуре 37 °С, а пересев на среду Сабуро - при температуре 21 °С.

При испытании проб препаратов проводят контроль стерильности сред: три пробирки с каждой средой выдерживают в термостате в течение 14 сут при 37 °С, со средой Сабуро - при температуре 21 °С.

2. Проведение испытания на стерильность без тиогликолевой среды.

Из каждой пробы препарата производят посев на жидкую среду Сабуро, мясопептонный агар и мясопептонный бульон - по три пробирки; на среду Тароцци - по две пробирки и два флакона.

Для выявления аэробов высевают 0,5 см 3 посевного материала в одну пробирку и 1...2 см 3 в один флакон, а для выявления анаэробов - соответственно по 1 и 5 см 3 . Посевы помещают в термостат (при температуре 37 °С; для Сабуро - при температуре 21 °С) на 7 сут (15 сут для анаэробов). Затем делают пересев (кроме посевов на мясопептонном агаре). Пересевают на те же среды. Выдерживают 7 сут (15 сут для анаэробов). Проводят контроль стерильности.

Оценка результатов. Учитывают результаты первичного и повторного посевов путем макроскопического, а в случае роста микроорганизмов - микроскопического исследования всех посевов, учитывают через 14 сут после первичного посева на тиогликолевой среде и через 7 сут после первичного посева без тиогликолевой среды. Среду считают стерильной, если ни в одной из засеянных пробирок не наблюдается рост.

В случаях роста хотя бы в одной из засеянных пробирок контроль стерильности повторяют на том же количестве проб и проводят микроскопию выросших микробов. Мазки окрашивают по Граму, отмечая морфологию.

При отсутствии роста в повторном контроле препарат считают стерильным. При наличии роста хотя бы в одной из пробирок и идентичности микрофлоры при первичном и повторном посевах препарат считают нестерильным.

Если при первичном и повторном посевах выявлена различная микрофлора, а также выявлен рост лишь в отдельных пробирках, проводят посев образцов в третий раз.

При отсутствии роста препарат считают стерильным. При обнаружении роста хотя бы в одной пробирке независимо от характера микрофлоры препарат считают нестерильным.

Нормативные требования к качеству готовых лекарственных форм. Лекарственные формы изготовляют на заводах, фармацевтических фабриках (официальные лекарственные средства) и в аптеках (магистральные лекарственные средства). Контроль готовых лекарственных форм на фармацевтических предприятиях осуществляют в соответствии с требованиями НТД (Государственной фармакопеи, ФС, ФСП, ГОСТов). В соответствии с требованиями этих документов лекарственные формы должны подвергаться проверке (В. Д. Соколов, 2003).

Таблетки испытывают на распадаемость. Если нет других указаний в частной статье, то таблетки должны распадаться в течение 15 мин, а покрытые оболочкой не более 30 мин. Кишечнорастворимые таблетки не должны распадаться в течение 1 ч в растворе соляной кислоты, но должны распадаться в течение 1 ч в растворе натрия гидрокарбоната. Прочность таблеток на истирание должна быть не менее 75 %. Лекарственное средство, содержащееся в таблетке, должно растворяться в воде за 45 мин не менее чем на 75 %. Среднюю массу определяют взвешиванием 20 таблеток с точностью до 0,001 г. Допускаются отклонения от средней массы: ±7,5%-для таблеток массой 0,1...0,3 г и ±5%-для таблеток массой 0,5 г и более. В таблетках также контролируют содержание талька.

Гранулы - определяют размер с помощью ситового анализа. Диаметр ячейки должен быть 0,2...3 мм, а число более мелких и более крупных гранул не должно превышать 5 %. Испытание распадаемости гранул из навески 0,5 г такое же, как и у таблеток. Время распадаемости не должно превышать 15 мин. Определяют влагу. Для выявления содержания лекарственного вещества берут навеску не менее чем из 10 растертых гранул.

Капсулы - контролируют среднюю массу. Отклонение от нее каждой капсулы не должно превышать ±10 %. Подобно тому как это проводят с таблетками, контролируют распадаемость и растворимость, а также определяют однородность дозирования для капсул, содержащих 0,05 г и менее лекарственного вещества. Количественное определение лекарственных веществ выполняют по специальным методикам, используя для этих целей содержимое от 20 до 60 капсул.

Порошки - устанавливают отклонения в массе дозированных порошков. Они могут быть ±15% при массе порошка до 0,1 г; ±10 % - от 0,1 до 0,3 г; ±5 % - от 0,3 до 1; ±3 % - свыше 1 г.

Суппозитории - визуально определяют однородность на продольном разрезе. Среднюю массу устанавливают взвешиванием с точностью до 0,01 г, отклонения не должны превышать ± 5 %. Суппозитории, изготовленные на липофильных основаниях, контролируют по температуре плавления. Она не должна превышать

37 °С. Если эту температуру установить невозможно, то определяют время полной деформации, которое должно быть не более 15 мин. Суппозитории, изготовленные на гидрофильной основе, испытывают на растворимость (показатель «растворение»). Определяют время растворения при температуре (37±1) °С, которое не должно превышать 1 ч. Количественное определение лекарственных веществ проводят по специальным методикам.

Настойки - определяют содержание спирта или плотность. Содержание действующих веществ устанавливают с помощью специальных методик. Кроме того, определяют сухой остаток после выпаривания в бюксе 5 мл настойки досуха и высушивания его в течение 2 ч при температуре (102,5±2,5) °С. В таком же объеме настойки после сжигания и прокаливания ее смеси с 1 мл концентрированной серной кислоты определяют содержание тяжелых металлов.

Экстракты - как и в настойках, определяют плотность или содержание спирта, действующих веществ, тяжелых металлов. Устанавливают также сухую массу остатка, а в густых и сухих экстрактах - содержание влаги [высушиванием в сушильном шкафу при температуре (102,5±2,5) °С).

Аэрозоли - измеряют давление внутри баллона с помощью манометра при комнатной температуре (если пропеллентом служит сжатый газ). Проверяют упаковку на герметичность. В дозированных упаковках определяют среднюю массу препарата в одной дозе, отклонение в которой допускается не более +20 %. Устанавливают процент выхода содержимого путем удаления его из баллона с последующим взвешиванием. Количественное определение вещества проводят в соответствии с требованиями частных статей Государственной фармакопеи. Отклонения от изложенных количеств не должно превышать ±15 %.

Мази - общим испытанием является метод определения размера частиц лекарственного вещества в мазях. Используют микроскоп с окулярным микрометром МОВ-1.

Пластыри. Состав, показатели качества, методики испытаний бывают разные и изложены в нормативной документации на конкретную продукцию.

Капли глазные испытывают на стерильность и наличие механических включений.

Инъекционные лекарственные формы. Особого внимания требуют инъекционные лекарственные растворы, вводимые внутривенно в больших количествах. Используют такие характеристики, как внешний вид, в том числе окраска и прозрачность растворов, отсутствие механических примесей, апирогенность, стерильность, объем раствора, количество в нем действующего вещества, pH и изотоничность плазмы крови, упаковка, маркировка, объем наполнения ампул. Нормы допустимых отклонений указаны в Государственной фармакопее XI. Кроме того, определяют содержание вспомогательных веществ; для некоторых из них (фенол, крезол, сульфиты, хлорбутанол) предусмотрены допустимые количества (от 0,2 до 0,5 %). Требования к pH зависят от препарата, обычно его показатель может находиться в пределах от 3,0 до 8,0. На каждой ампуле (флаконе) указывают название лекарственного средства, его содержание (в процентах) или активность (в единицах действия, ЕД), объем или его массу, номер серии, срок годности. Проведение всех испытаний инъекционных лекарственных форм регламентировано НТД.

Анализ гомеопатических лекарственных средств весьма труден из-за высоких разведений лекарственных веществ. Если БАВ содержатся в настойках, эссенциях, мазях и других формах в разведениях до 2 С (С - сотенное) или 0,0001, то их анализ и стандартизация практически не отличаются от контроля качества лекарственных форм, используемых в аллопатической медицине. Лекарственные средства в разведении 2...3 С (10 -4 ...10 -6) анализируют после проведения специальных приемов концентрации с помощью упаривания, сжигания веществ с последующим определением одним из физико-химических методов, исходя из его разрешающей способности. При более чем 3 С разведении (10 -6) достаточно установить подлинность лекарственного средства, содержащегося в одной разовой или суточной дозе. При очень высоких разведениях (до 50 С или 10 -10 ...10 -100) контроль качества гомеопатических средств существующими методами выполнить невозможно. Для таких лекарств контроль качества осуществляют на стадии получения, строго контролируя технологический процесс. Качество контролируют при закладке ингредиентов и фиксируют в акте загрузки. Каждый ингредиент подвергают предварительному анализу. Во всех перечисленных случаях для анализа и стандартизации гомеопатических лекарственных средств используют хроматографические, фотометрические, флуоресцентные и другие методы.